Metamath Proof Explorer


Theorem fedgmullem1

Description: Lemma for fedgmul . (Contributed by Thierry Arnoux, 20-Jul-2023)

Ref Expression
Hypotheses fedgmul.a A=subringAlgEV
fedgmul.b B=subringAlgEU
fedgmul.c C=subringAlgFV
fedgmul.f F=E𝑠U
fedgmul.k K=E𝑠V
fedgmul.1 φEDivRing
fedgmul.2 φFDivRing
fedgmul.3 φKDivRing
fedgmul.4 φUSubRingE
fedgmul.5 φVSubRingF
fedgmullem.d D=jY,iXiEj
fedgmullem.h H=jY,iXGji
fedgmullem.x φXLBasisC
fedgmullem.y φYLBasisB
fedgmullem1.a φZBaseA
fedgmullem1.l φL:YBaseScalarB
fedgmullem1.1 φfinSupp0ScalarBL
fedgmullem1.z φZ=BjYLjBj
fedgmullem1.g φG:YBaseScalarCX
fedgmullem1.2 φjYfinSupp0ScalarCGj
fedgmullem1.3 φjYLj=CiXGjiCi
Assertion fedgmullem1 φfinSupp0ScalarAHZ=AHAfD

Proof

Step Hyp Ref Expression
1 fedgmul.a A=subringAlgEV
2 fedgmul.b B=subringAlgEU
3 fedgmul.c C=subringAlgFV
4 fedgmul.f F=E𝑠U
5 fedgmul.k K=E𝑠V
6 fedgmul.1 φEDivRing
7 fedgmul.2 φFDivRing
8 fedgmul.3 φKDivRing
9 fedgmul.4 φUSubRingE
10 fedgmul.5 φVSubRingF
11 fedgmullem.d D=jY,iXiEj
12 fedgmullem.h H=jY,iXGji
13 fedgmullem.x φXLBasisC
14 fedgmullem.y φYLBasisB
15 fedgmullem1.a φZBaseA
16 fedgmullem1.l φL:YBaseScalarB
17 fedgmullem1.1 φfinSupp0ScalarBL
18 fedgmullem1.z φZ=BjYLjBj
19 fedgmullem1.g φG:YBaseScalarCX
20 fedgmullem1.2 φjYfinSupp0ScalarCGj
21 fedgmullem1.3 φjYLj=CiXGjiCi
22 simpllr φG:YBaseScalarCXjYiXG:YBaseScalarCX
23 simplr φG:YBaseScalarCXjYiXjY
24 22 23 ffvelcdmd φG:YBaseScalarCXjYiXGjBaseScalarCX
25 elmapi GjBaseScalarCXGj:XBaseScalarC
26 24 25 syl φG:YBaseScalarCXjYiXGj:XBaseScalarC
27 26 anasss φG:YBaseScalarCXjYiXGj:XBaseScalarC
28 simprr φG:YBaseScalarCXjYiXiX
29 27 28 ffvelcdmd φG:YBaseScalarCXjYiXGjiBaseScalarC
30 1 a1i φA=subringAlgEV
31 4 subsubrg USubRingEVSubRingFVSubRingEVU
32 31 biimpa USubRingEVSubRingFVSubRingEVU
33 9 10 32 syl2anc φVSubRingEVU
34 33 simpld φVSubRingE
35 eqid BaseE=BaseE
36 35 subrgss VSubRingEVBaseE
37 34 36 syl φVBaseE
38 30 37 srasca φE𝑠V=ScalarA
39 5 38 eqtrid φK=ScalarA
40 33 simprd φVU
41 ressabs USubRingEVUE𝑠U𝑠V=E𝑠V
42 9 40 41 syl2anc φE𝑠U𝑠V=E𝑠V
43 4 oveq1i F𝑠V=E𝑠U𝑠V
44 42 43 5 3eqtr4g φF𝑠V=K
45 3 a1i φC=subringAlgFV
46 eqid BaseF=BaseF
47 46 subrgss VSubRingFVBaseF
48 10 47 syl φVBaseF
49 45 48 srasca φF𝑠V=ScalarC
50 44 49 eqtr3d φK=ScalarC
51 39 50 eqtr3d φScalarA=ScalarC
52 51 fveq2d φBaseScalarA=BaseScalarC
53 52 ad2antrr φG:YBaseScalarCXjYiXBaseScalarA=BaseScalarC
54 29 53 eleqtrrd φG:YBaseScalarCXjYiXGjiBaseScalarA
55 54 ralrimivva φG:YBaseScalarCXjYiXGjiBaseScalarA
56 12 fmpo jYiXGjiBaseScalarAH:Y×XBaseScalarA
57 55 56 sylib φG:YBaseScalarCXH:Y×XBaseScalarA
58 fvexd φG:YBaseScalarCXBaseScalarAV
59 14 13 xpexd φY×XV
60 59 adantr φG:YBaseScalarCXY×XV
61 58 60 elmapd φG:YBaseScalarCXHBaseScalarAY×XH:Y×XBaseScalarA
62 57 61 mpbird φG:YBaseScalarCXHBaseScalarAY×X
63 19 62 mpdan φHBaseScalarAY×X
64 simpl φjYφ
65 64 adantr φjYiXφ
66 19 ffvelcdmda φjYGjBaseScalarCX
67 66 25 syl φjYGj:XBaseScalarC
68 67 adantr φjYiXGj:XBaseScalarC
69 52 feq3d φGj:XBaseScalarAGj:XBaseScalarC
70 69 biimpar φGj:XBaseScalarCGj:XBaseScalarA
71 65 68 70 syl2anc φjYiXGj:XBaseScalarA
72 simpr φjYiXiX
73 71 72 ffvelcdmd φjYiXGjiBaseScalarA
74 73 ralrimiva φjYiXGjiBaseScalarA
75 74 ralrimiva φjYiXGjiBaseScalarA
76 75 56 sylib φH:Y×XBaseScalarA
77 76 ffund φFunH
78 drngring EDivRingERing
79 6 78 syl φERing
80 ringgrp ERingEGrp
81 eqid 0E=0E
82 35 81 grpidcl EGrp0EBaseE
83 79 80 82 3syl φ0EBaseE
84 17 fsuppimpd φLsupp0ScalarBFin
85 simpl φjYsupp0ScalarBLφ
86 simpr φjYsupp0ScalarBLjYsupp0ScalarBL
87 86 eldifad φjYsupp0ScalarBLjY
88 ssidd φLsupp0ScalarBLsupp0ScalarB
89 fvexd φ0ScalarBV
90 16 88 14 89 suppssr φjYsupp0ScalarBLLj=0ScalarB
91 87 21 syldan φjYsupp0ScalarBLLj=CiXGjiCi
92 2 a1i φB=subringAlgEU
93 35 subrgss USubRingEUBaseE
94 9 93 syl φUBaseE
95 92 94 srasca φE𝑠U=ScalarB
96 4 95 eqtrid φF=ScalarB
97 96 fveq2d φ0F=0ScalarB
98 3 7 10 drgext0g φ0F=0C
99 97 98 eqtr3d φ0ScalarB=0C
100 99 adantr φjYsupp0ScalarBL0ScalarB=0C
101 90 91 100 3eqtr3d φjYsupp0ScalarBLCiXGjiCi=0C
102 breq1 g=GjfinSupp0ScalarCgfinSupp0ScalarCGj
103 fveq1 g=Gjgi=Gji
104 103 oveq1d g=GjgiCi=GjiCi
105 104 mpteq2dv g=GjiXgiCi=iXGjiCi
106 105 oveq2d g=GjCiXgiCi=CiXGjiCi
107 106 eqeq1d g=GjCiXgiCi=0CCiXGjiCi=0C
108 102 107 anbi12d g=GjfinSupp0ScalarCgCiXgiCi=0CfinSupp0ScalarCGjCiXGjiCi=0C
109 eqeq1 g=Gjg=X×0ScalarCGj=X×0ScalarC
110 108 109 imbi12d g=GjfinSupp0ScalarCgCiXgiCi=0Cg=X×0ScalarCfinSupp0ScalarCGjCiXGjiCi=0CGj=X×0ScalarC
111 44 8 eqeltrd φF𝑠VDivRing
112 eqid F𝑠V=F𝑠V
113 3 112 sralvec FDivRingF𝑠VDivRingVSubRingFCLVec
114 7 111 10 113 syl3anc φCLVec
115 lveclmod CLVecCLMod
116 114 115 syl φCLMod
117 116 adantr φjYCLMod
118 eqid BaseC=BaseC
119 eqid LBasisC=LBasisC
120 118 119 lbsss XLBasisCXBaseC
121 13 120 syl φXBaseC
122 121 adantr φjYXBaseC
123 eqid LSpanC=LSpanC
124 118 119 123 islbs4 XLBasisCXLIndSCLSpanCX=BaseC
125 13 124 sylib φXLIndSCLSpanCX=BaseC
126 125 simpld φXLIndSC
127 126 adantr φjYXLIndSC
128 eqid BaseScalarC=BaseScalarC
129 eqid ScalarC=ScalarC
130 eqid C=C
131 eqid 0C=0C
132 eqid 0ScalarC=0ScalarC
133 118 128 129 130 131 132 islinds5 CLModXBaseCXLIndSCgBaseScalarCXfinSupp0ScalarCgCiXgiCi=0Cg=X×0ScalarC
134 133 biimpa CLModXBaseCXLIndSCgBaseScalarCXfinSupp0ScalarCgCiXgiCi=0Cg=X×0ScalarC
135 117 122 127 134 syl21anc φjYgBaseScalarCXfinSupp0ScalarCgCiXgiCi=0Cg=X×0ScalarC
136 110 135 66 rspcdva φjYfinSupp0ScalarCGjCiXGjiCi=0CGj=X×0ScalarC
137 20 136 mpand φjYCiXGjiCi=0CGj=X×0ScalarC
138 137 imp φjYCiXGjiCi=0CGj=X×0ScalarC
139 85 87 101 138 syl21anc φjYsupp0ScalarBLGj=X×0ScalarC
140 19 139 suppss φGsuppX×0ScalarCLsupp0ScalarB
141 84 140 ssfid φGsuppX×0ScalarCFin
142 suppssdm GsuppX×0ScalarCdomG
143 142 19 fssdm φGsuppX×0ScalarCY
144 143 sselda φwsuppX×0ScalarCGwY
145 eleq1w j=wjYwY
146 145 anbi2d j=wφjYφwY
147 fveq2 j=wGj=Gw
148 147 breq1d j=wfinSupp0ScalarCGjfinSupp0ScalarCGw
149 146 148 imbi12d j=wφjYfinSupp0ScalarCGjφwYfinSupp0ScalarCGw
150 149 20 chvarvv φwYfinSupp0ScalarCGw
151 150 fsuppimpd φwYGwsupp0ScalarCFin
152 144 151 syldan φwsuppX×0ScalarCGGwsupp0ScalarCFin
153 152 ralrimiva φwsuppX×0ScalarCGGwsupp0ScalarCFin
154 iunfi GsuppX×0ScalarCFinwsuppX×0ScalarCGGwsupp0ScalarCFinwGsuppX×0ScalarCsupp0ScalarCGwFin
155 141 153 154 syl2anc φwGsuppX×0ScalarCsupp0ScalarCGwFin
156 xpfi GsuppX×0ScalarCFinwGsuppX×0ScalarCsupp0ScalarCGwFinsuppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGwFin
157 141 155 156 syl2anc φsuppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGwFin
158 fveq2 v=jGv=Gj
159 158 fveq1d v=jGvu=Gju
160 159 mpteq2dv v=juXGvu=uXGju
161 fveq2 u=iGju=Gji
162 161 cbvmptv uXGju=iXGji
163 160 162 eqtrdi v=juXGvu=iXGji
164 163 cbvmptv vYuXGvu=jYiXGji
165 fvexd φ0ScalarCV
166 fvexd φjYiXGjiV
167 12 164 14 13 165 166 suppovss φHsupp0ScalarCsuppX×0ScalarCvYuXGvu×wvYuXGvusuppX×0ScalarCsupp0ScalarCvYuXGvuw
168 5 81 subrg0 VSubRingE0E=0K
169 34 168 syl φ0E=0K
170 50 fveq2d φ0K=0ScalarC
171 169 170 eqtr2d φ0ScalarC=0E
172 171 oveq2d φHsupp0ScalarC=Hsupp0E
173 19 feqmptd φG=vYGv
174 eleq1w j=vjYvY
175 174 anbi2d j=vφjYφvY
176 fveq2 j=vGj=Gv
177 176 feq1d j=vGj:XBaseEGv:XBaseE
178 175 177 imbi12d j=vφjYGj:XBaseEφvYGv:XBaseE
179 5 35 ressbas2 VBaseEV=BaseK
180 37 179 syl φV=BaseK
181 50 fveq2d φBaseK=BaseScalarC
182 180 181 eqtrd φV=BaseScalarC
183 182 37 eqsstrrd φBaseScalarCBaseE
184 183 adantr φjYBaseScalarCBaseE
185 67 184 fssd φjYGj:XBaseE
186 178 185 chvarvv φvYGv:XBaseE
187 186 feqmptd φvYGv=uXGvu
188 187 mpteq2dva φvYGv=vYuXGvu
189 173 188 eqtr2d φvYuXGvu=G
190 189 oveq1d φvYuXGvusuppX×0ScalarC=GsuppX×0ScalarC
191 189 fveq1d φvYuXGvuw=Gw
192 191 oveq1d φvYuXGvuwsupp0ScalarC=Gwsupp0ScalarC
193 190 192 iuneq12d φwvYuXGvusuppX×0ScalarCsupp0ScalarCvYuXGvuw=wGsuppX×0ScalarCsupp0ScalarCGw
194 190 193 xpeq12d φsuppX×0ScalarCvYuXGvu×wvYuXGvusuppX×0ScalarCsupp0ScalarCvYuXGvuw=suppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGw
195 167 172 194 3sstr3d φHsupp0EsuppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGw
196 suppssfifsupp HBaseScalarAY×XFunH0EBaseEsuppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGwFinHsupp0EsuppX×0ScalarCG×wGsuppX×0ScalarCsupp0ScalarCGwfinSupp0EH
197 63 77 83 157 195 196 syl32anc φfinSupp0EH
198 51 fveq2d φ0ScalarA=0ScalarC
199 198 171 eqtr2d φ0E=0ScalarA
200 197 199 breqtrd φfinSupp0ScalarAH
201 2 6 9 4 7 14 drgextgsum φEjYLjBj=BjYLjBj
202 13 adantr φjYXLBasisC
203 9 adantr φjYUSubRingE
204 subrgsubg USubRingEUSubGrpE
205 subgsubm USubGrpEUSubMndE
206 203 204 205 3syl φjYUSubMndE
207 116 ad2antrr φjYiXCLMod
208 67 ffvelcdmda φjYiXGjiBaseScalarC
209 121 ad2antrr φjYiXXBaseC
210 209 72 sseldd φjYiXiBaseC
211 118 129 130 128 lmodvscl CLModGjiBaseScalarCiBaseCGjiCiBaseC
212 207 208 210 211 syl3anc φjYiXGjiCiBaseC
213 4 35 ressbas2 UBaseEU=BaseF
214 94 213 syl φU=BaseF
215 45 48 srabase φBaseF=BaseC
216 214 215 eqtrd φU=BaseC
217 216 ad2antrr φjYiXU=BaseC
218 212 217 eleqtrrd φjYiXGjiCiU
219 218 fmpttd φjYiXGjiCi:XU
220 202 206 219 4 gsumsubm φjYEiXGjiCi=FiXGjiCi
221 eqid E=E
222 4 221 ressmulr USubRingEE=F
223 9 222 syl φE=F
224 45 48 sravsca φF=C
225 223 224 eqtr2d φC=E
226 225 ad2antrr φjYiXC=E
227 226 oveqd φjYiXGjiCi=GjiEi
228 227 mpteq2dva φjYiXGjiCi=iXGjiEi
229 228 oveq2d φjYEiXGjiCi=EiXGjiEi
230 3 7 10 112 111 13 drgextgsum φFiXGjiCi=CiXGjiCi
231 230 adantr φjYFiXGjiCi=CiXGjiCi
232 220 229 231 3eqtr3d φjYEiXGjiEi=CiXGjiCi
233 232 oveq1d φjYEiXGjiEiEj=CiXGjiCiEj
234 79 ad2antrr φjYiXERing
235 183 ad2antrr φjYiXBaseScalarCBaseE
236 235 208 sseldd φjYiXGjiBaseE
237 216 94 eqsstrrd φBaseCBaseE
238 121 237 sstrd φXBaseE
239 238 ad2antrr φjYiXXBaseE
240 239 72 sseldd φjYiXiBaseE
241 eqid BaseB=BaseB
242 eqid LBasisB=LBasisB
243 241 242 lbsss YLBasisBYBaseB
244 14 243 syl φYBaseB
245 92 94 srabase φBaseE=BaseB
246 244 245 sseqtrrd φYBaseE
247 246 ad2antrr φjYiXYBaseE
248 simplr φjYiXjY
249 247 248 sseldd φjYiXjBaseE
250 35 221 ringass ERingGjiBaseEiBaseEjBaseEGjiEiEj=GjiEiEj
251 234 236 240 249 250 syl13anc φjYiXGjiEiEj=GjiEiEj
252 251 mpteq2dva φjYiXGjiEiEj=iXGjiEiEj
253 252 oveq2d φjYEiXGjiEiEj=EiXGjiEiEj
254 79 adantr φjYERing
255 244 adantr φjYYBaseB
256 245 adantr φjYBaseE=BaseB
257 255 256 sseqtrrd φjYYBaseE
258 simpr φjYjY
259 257 258 sseldd φjYjBaseE
260 35 221 ringcl ERingGjiBaseEiBaseEGjiEiBaseE
261 234 236 240 260 syl3anc φjYiXGjiEiBaseE
262 171 breq2d φfinSupp0ScalarCGjfinSupp0EGj
263 262 adantr φjYfinSupp0ScalarCGjfinSupp0EGj
264 20 263 mpbid φjYfinSupp0EGj
265 35 254 202 240 185 264 rmfsupp2 φjYfinSupp0EiXGjiEi
266 35 81 221 254 202 259 261 265 gsummulc1 φjYEiXGjiEiEj=EiXGjiEiEj
267 253 266 eqtr3d φjYEiXGjiEiEj=EiXGjiEiEj
268 21 oveq1d φjYLjEj=CiXGjiCiEj
269 233 267 268 3eqtr4rd φjYLjEj=EiXGjiEiEj
270 92 94 sravsca φE=B
271 270 adantr φjYE=B
272 271 oveqd φjYLjEj=LjBj
273 fvexd φjYiXGjiV
274 ovexd φjYiXiEjV
275 12 a1i φH=jY,iXGji
276 11 a1i φD=jY,iXiEj
277 14 13 273 274 275 276 offval22 φHEfD=jY,iXGjiEiEj
278 277 oveqd φjHEfDi=jjY,iXGjiEiEji
279 278 ad2antrr φjYiXjHEfDi=jjY,iXGjiEiEji
280 ovexd φjYiXGjiEiEjV
281 eqid jY,iXGjiEiEj=jY,iXGjiEiEj
282 281 ovmpt4g jYiXGjiEiEjVjjY,iXGjiEiEji=GjiEiEj
283 248 72 280 282 syl3anc φjYiXjjY,iXGjiEiEji=GjiEiEj
284 279 283 eqtr2d φjYiXGjiEiEj=jHEfDi
285 284 mpteq2dva φjYiXGjiEiEj=iXjHEfDi
286 285 oveq2d φjYEiXGjiEiEj=EiXjHEfDi
287 269 272 286 3eqtr3d φjYLjBj=EiXjHEfDi
288 287 mpteq2dva φjYLjBj=jYEiXjHEfDi
289 288 oveq2d φEjYLjBj=EjYEiXjHEfDi
290 ringcmn ERingECMnd
291 79 290 syl φECMnd
292 79 adantr φlBaseScalarAkBaseAERing
293 52 183 eqsstrd φBaseScalarABaseE
294 293 adantr φlBaseScalarAkBaseABaseScalarABaseE
295 simprl φlBaseScalarAkBaseAlBaseScalarA
296 294 295 sseldd φlBaseScalarAkBaseAlBaseE
297 simprr φlBaseScalarAkBaseAkBaseA
298 30 37 srabase φBaseE=BaseA
299 298 adantr φlBaseScalarAkBaseABaseE=BaseA
300 297 299 eleqtrrd φlBaseScalarAkBaseAkBaseE
301 35 221 ringcl ERinglBaseEkBaseElEkBaseE
302 292 296 300 301 syl3anc φlBaseScalarAkBaseAlEkBaseE
303 35 221 ringcl ERingiBaseEjBaseEiEjBaseE
304 234 240 249 303 syl3anc φjYiXiEjBaseE
305 298 ad2antrr φjYiXBaseE=BaseA
306 304 305 eleqtrd φjYiXiEjBaseA
307 306 anasss φjYiXiEjBaseA
308 307 ralrimivva φjYiXiEjBaseA
309 11 fmpo jYiXiEjBaseAD:Y×XBaseA
310 308 309 sylib φD:Y×XBaseA
311 inidm Y×XY×X=Y×X
312 302 76 310 59 59 311 off φHEfD:Y×XBaseE
313 79 adantr φuBaseAERing
314 simpr φuBaseAuBaseA
315 298 adantr φuBaseABaseE=BaseA
316 314 315 eleqtrrd φuBaseAuBaseE
317 35 221 81 ringlz ERinguBaseE0EEu=0E
318 313 316 317 syl2anc φuBaseA0EEu=0E
319 59 83 83 76 310 197 318 offinsupp1 φfinSupp0EHEfD
320 35 81 291 14 13 312 319 gsumxp φEHEfD=EjYEiXjHEfDi
321 30 37 sravsca φE=A
322 321 ofeqd φfE=fA
323 322 oveqd φHEfD=HAfD
324 323 oveq2d φEHEfD=EHAfD
325 289 320 324 3eqtr2rd φEHAfD=EjYLjBj
326 ovexd φHAfDV
327 15 elfvexd φAV
328 1 326 6 327 37 gsumsra φEHAfD=AHAfD
329 325 328 eqtr3d φEjYLjBj=AHAfD
330 18 201 329 3eqtr2d φZ=AHAfD
331 200 330 jca φfinSupp0ScalarAHZ=AHAfD