| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fedgmul.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) |
| 2 |
|
fedgmul.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 3 |
|
fedgmul.c |
⊢ 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) |
| 4 |
|
fedgmul.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 5 |
|
fedgmul.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝑉 ) |
| 6 |
|
fedgmul.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 7 |
|
fedgmul.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 8 |
|
fedgmul.3 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 9 |
|
fedgmul.4 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 10 |
|
fedgmul.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
| 11 |
|
fedgmullem.d |
⊢ 𝐷 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 12 |
|
fedgmullem.h |
⊢ 𝐻 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) |
| 13 |
|
fedgmullem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( LBasis ‘ 𝐶 ) ) |
| 14 |
|
fedgmullem.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LBasis ‘ 𝐵 ) ) |
| 15 |
|
fedgmullem2.1 |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) ) ) |
| 16 |
|
fedgmullem2.2 |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) = ( 0g ‘ 𝐴 ) ) |
| 17 |
4
|
subsubrg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) ↔ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
| 19 |
9 10 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
| 20 |
19
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) |
| 21 |
1 5
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |
| 22 |
6 8 20 21
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ LVec ) |
| 23 |
|
lveclmod |
⊢ ( 𝐴 ∈ LVec → 𝐴 ∈ LMod ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 26 |
|
eqid |
⊢ ( LBasis ‘ 𝐶 ) = ( LBasis ‘ 𝐶 ) |
| 27 |
25 26
|
lbsss |
⊢ ( 𝑋 ∈ ( LBasis ‘ 𝐶 ) → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
| 28 |
13 27
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 30 |
29
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 31 |
9 30
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 32 |
4 29
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐸 ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 34 |
3
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 36 |
35
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
| 37 |
10 36
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
| 38 |
34 37
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ 𝐶 ) ) |
| 39 |
33 38
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 40 |
39 31
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 41 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) ) |
| 42 |
29
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
| 43 |
20 42
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
| 44 |
41 43
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 45 |
40 44
|
sseqtrd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 46 |
28 45
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝐴 ) ) |
| 47 |
41 9 43
|
srasubrg |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐴 ) ) |
| 48 |
|
subrgsubg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐴 ) → 𝑈 ∈ ( SubGrp ‘ 𝐴 ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐴 ) ) |
| 50 |
1 6 20
|
drgextvsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 51 |
50
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) |
| 52 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 53 |
19
|
simprd |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑉 ⊆ 𝑈 ) |
| 55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 56 |
|
ressabs |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
| 57 |
9 53 56
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
| 58 |
4
|
oveq1i |
⊢ ( 𝐹 ↾s 𝑉 ) = ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) |
| 59 |
57 58 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = 𝐾 ) |
| 60 |
34 37
|
srasca |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = ( Scalar ‘ 𝐶 ) ) |
| 61 |
59 60
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐶 ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 63 |
5 29
|
ressbas2 |
⊢ ( 𝑉 ⊆ ( Base ‘ 𝐸 ) → 𝑉 = ( Base ‘ 𝐾 ) ) |
| 64 |
43 63
|
syl |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝐾 ) ) |
| 65 |
41 43
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑉 ) = ( Scalar ‘ 𝐴 ) ) |
| 66 |
5 65
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐴 ) ) |
| 67 |
59 60 66
|
3eqtr3rd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐶 ) ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 69 |
62 64 68
|
3eqtr4d |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑉 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 71 |
55 70
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑉 ) |
| 72 |
54 71
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
| 73 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 74 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 75 |
74
|
subrgmcl |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) ∈ 𝑈 ) |
| 76 |
52 72 73 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) ∈ 𝑈 ) |
| 77 |
51 76
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ 𝑈 ) |
| 78 |
77
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ 𝑈 ) |
| 79 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 80 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 81 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 82 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 83 |
|
eqid |
⊢ ( LSubSp ‘ 𝐴 ) = ( LSubSp ‘ 𝐴 ) |
| 84 |
79 80 81 82 83
|
islss4 |
⊢ ( 𝐴 ∈ LMod → ( 𝑈 ∈ ( LSubSp ‘ 𝐴 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ 𝑈 ) ) ) |
| 85 |
84
|
biimpar |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ 𝑈 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝐴 ) ) |
| 86 |
24 49 78 85
|
syl12anc |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝐴 ) ) |
| 87 |
28 39
|
sseqtrrd |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑈 ) |
| 88 |
26
|
lbslinds |
⊢ ( LBasis ‘ 𝐶 ) ⊆ ( LIndS ‘ 𝐶 ) |
| 89 |
88 13
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( LIndS ‘ 𝐶 ) ) |
| 90 |
31 44
|
sseqtrd |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐴 ) ) |
| 91 |
|
eqid |
⊢ ( 𝐴 ↾s 𝑈 ) = ( 𝐴 ↾s 𝑈 ) |
| 92 |
91 81
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐴 ) → 𝑈 = ( Base ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 93 |
90 92
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 94 |
33 93 38
|
3eqtr3rd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 95 |
91 79
|
resssca |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 96 |
9 95
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 97 |
67 96
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( Scalar ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ ( 𝐴 ↾s 𝑈 ) ) ) ) |
| 99 |
97
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ ( 𝐴 ↾s 𝑈 ) ) ) ) |
| 100 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
| 101 |
4 100
|
ressplusg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐹 ) ) |
| 102 |
9 101
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐹 ) ) |
| 103 |
41 43
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐴 ) ) |
| 104 |
34 37
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ 𝐶 ) ) |
| 105 |
102 103 104
|
3eqtr3rd |
⊢ ( 𝜑 → ( +g ‘ 𝐶 ) = ( +g ‘ 𝐴 ) ) |
| 106 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
| 107 |
91 106
|
ressplusg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( +g ‘ 𝐴 ) = ( +g ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 108 |
9 107
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝐴 ) = ( +g ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 109 |
105 108
|
eqtrd |
⊢ ( 𝜑 → ( +g ‘ 𝐶 ) = ( +g ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 110 |
109
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐴 ↾s 𝑈 ) ) 𝑦 ) ) |
| 111 |
59 8
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) ∈ DivRing ) |
| 112 |
|
eqid |
⊢ ( 𝐹 ↾s 𝑉 ) = ( 𝐹 ↾s 𝑉 ) |
| 113 |
3 112
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s 𝑉 ) ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → 𝐶 ∈ LVec ) |
| 114 |
7 111 10 113
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
| 115 |
|
lveclmod |
⊢ ( 𝐶 ∈ LVec → 𝐶 ∈ LMod ) |
| 116 |
114 115
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 117 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 118 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
| 119 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 120 |
25 117 118 119
|
lmodvscl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 121 |
120
|
3expb |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 122 |
116 121
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐶 ) 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 123 |
2 6 9
|
drgextvsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 124 |
50 123
|
eqtr3d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 125 |
91 82
|
ressvsca |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 126 |
9 125
|
syl |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 127 |
4 74
|
ressmulr |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
| 128 |
9 127
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
| 129 |
3 7 10
|
drgextvsca |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( ·𝑠 ‘ 𝐶 ) ) |
| 130 |
128 123 129
|
3eqtr3d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐵 ) = ( ·𝑠 ‘ 𝐶 ) ) |
| 131 |
124 126 130
|
3eqtr3rd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 132 |
131
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 𝐴 ↾s 𝑈 ) ) 𝑦 ) ) |
| 133 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐴 ↾s 𝑈 ) ∈ V ) |
| 134 |
94 98 99 110 122 132 114 133
|
lindspropd |
⊢ ( 𝜑 → ( LIndS ‘ 𝐶 ) = ( LIndS ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 135 |
89 134
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( LIndS ‘ ( 𝐴 ↾s 𝑈 ) ) ) |
| 136 |
83 91
|
lsslinds |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝐴 ) ∧ 𝑋 ⊆ 𝑈 ) → ( 𝑋 ∈ ( LIndS ‘ ( 𝐴 ↾s 𝑈 ) ) ↔ 𝑋 ∈ ( LIndS ‘ 𝐴 ) ) ) |
| 137 |
136
|
biimpa |
⊢ ( ( ( 𝐴 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝐴 ) ∧ 𝑋 ⊆ 𝑈 ) ∧ 𝑋 ∈ ( LIndS ‘ ( 𝐴 ↾s 𝑈 ) ) ) → 𝑋 ∈ ( LIndS ‘ 𝐴 ) ) |
| 138 |
24 86 87 135 137
|
syl31anc |
⊢ ( 𝜑 → 𝑋 ∈ ( LIndS ‘ 𝐴 ) ) |
| 139 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 140 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) |
| 141 |
81 80 79 82 139 140
|
islinds5 |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝑋 ⊆ ( Base ‘ 𝐴 ) ) → ( 𝑋 ∈ ( LIndS ‘ 𝐴 ) ↔ ∀ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) ) |
| 142 |
141
|
biimpa |
⊢ ( ( ( 𝐴 ∈ LMod ∧ 𝑋 ⊆ ( Base ‘ 𝐴 ) ) ∧ 𝑋 ∈ ( LIndS ‘ 𝐴 ) ) → ∀ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 143 |
24 46 138 142
|
syl21anc |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ∀ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 145 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) |
| 146 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 0g ‘ 𝐹 ) ∈ V ) |
| 147 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑌 ∈ ( LBasis ‘ 𝐵 ) ) |
| 148 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑋 ∈ ( LBasis ‘ 𝐶 ) ) |
| 149 |
|
fvexd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) ∈ V ) |
| 150 |
14 13
|
xpexd |
⊢ ( 𝜑 → ( 𝑌 × 𝑋 ) ∈ V ) |
| 151 |
|
eqid |
⊢ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) = ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) |
| 152 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) ) |
| 153 |
151 80 140 152
|
frlmelbas |
⊢ ( ( ( Scalar ‘ 𝐴 ) ∈ V ∧ ( 𝑌 × 𝑋 ) ∈ V ) → ( 𝑊 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) ) ↔ ( 𝑊 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ∧ 𝑊 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) ) |
| 154 |
149 150 153
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑌 × 𝑋 ) ) ) ↔ ( 𝑊 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ∧ 𝑊 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) ) |
| 155 |
15 154
|
mpbid |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ∧ 𝑊 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 156 |
155
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ) |
| 157 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 158 |
157 150
|
elmapd |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ↔ 𝑊 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 159 |
156 158
|
mpbid |
⊢ ( 𝜑 → 𝑊 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 160 |
159
|
ffnd |
⊢ ( 𝜑 → 𝑊 Fn ( 𝑌 × 𝑋 ) ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑊 Fn ( 𝑌 × 𝑋 ) ) |
| 162 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ 𝑌 ) |
| 163 |
155
|
simprd |
⊢ ( 𝜑 → 𝑊 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 164 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
| 165 |
6 164
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 166 |
|
ringmnd |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ Mnd ) |
| 167 |
165 166
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 168 |
|
subrgsubg |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → 𝑉 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 169 |
20 168
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 170 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 171 |
170
|
subg0cl |
⊢ ( 𝑉 ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ 𝑉 ) |
| 172 |
169 171
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝑉 ) |
| 173 |
53 172
|
sseldd |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝑈 ) |
| 174 |
4 29 170
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ 𝑈 ∧ 𝑈 ⊆ ( Base ‘ 𝐸 ) ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐹 ) ) |
| 175 |
167 173 31 174
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐹 ) ) |
| 176 |
61
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 177 |
5 170
|
subrg0 |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐾 ) ) |
| 178 |
20 177
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐾 ) ) |
| 179 |
67
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 180 |
176 178 179
|
3eqtr4d |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 181 |
175 180
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 182 |
163 181
|
breqtrrd |
⊢ ( 𝜑 → 𝑊 finSupp ( 0g ‘ 𝐹 ) ) |
| 183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑊 finSupp ( 0g ‘ 𝐹 ) ) |
| 184 |
145 146 147 148 161 162 183
|
fsuppcurry1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ 𝐹 ) ) |
| 185 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 186 |
184 185
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 187 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 188 |
159
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 189 |
188
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 190 |
187 189
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) = ( 𝑗 𝑊 𝑖 ) ) |
| 191 |
190
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) |
| 192 |
124
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 193 |
192
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) |
| 194 |
191 193
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) |
| 195 |
194
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) |
| 196 |
195
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 197 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐸 ∈ DivRing ) |
| 198 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) |
| 199 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐾 ∈ DivRing ) |
| 200 |
1 197 198 5 199 148
|
drgextgsum |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 201 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 202 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐹 ∈ DivRing ) |
| 203 |
2 197 201 4 202 148
|
drgextgsum |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 204 |
200 203
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 205 |
196 204
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 206 |
14
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∈ V ) |
| 207 |
|
eqid |
⊢ ( 0g ‘ 𝐵 ) = ( 0g ‘ 𝐵 ) |
| 208 |
2 4
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐵 ∈ LVec ) |
| 209 |
6 7 9 208
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ LVec ) |
| 210 |
|
lveclmod |
⊢ ( 𝐵 ∈ LVec → 𝐵 ∈ LMod ) |
| 211 |
209 210
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ LMod ) |
| 212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐵 ∈ LMod ) |
| 213 |
|
lmodabl |
⊢ ( 𝐵 ∈ LMod → 𝐵 ∈ Abel ) |
| 214 |
212 213
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐵 ∈ Abel ) |
| 215 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
| 216 |
215 9 31
|
srasubrg |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐵 ) ) |
| 217 |
|
subrgsubg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐵 ) → 𝑈 ∈ ( SubGrp ‘ 𝐵 ) ) |
| 218 |
216 217
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐵 ) ) |
| 219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝐵 ) ) |
| 220 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐶 ∈ LMod ) |
| 221 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 222 |
189 221
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 223 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
| 224 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 225 |
223 224
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐶 ) ) |
| 226 |
25 117 118 119
|
lmodvscl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑖 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∈ ( Base ‘ 𝐶 ) ) |
| 227 |
220 222 225 226
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∈ ( Base ‘ 𝐶 ) ) |
| 228 |
130
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 229 |
228
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 230 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 231 |
227 229 230
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ∈ 𝑈 ) |
| 232 |
231
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) : 𝑋 ⟶ 𝑈 ) |
| 233 |
215 31
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
| 234 |
4 233
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
| 235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
| 236 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
| 237 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ V ) |
| 238 |
28 40
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝐸 ) ) |
| 239 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝐸 ) ) |
| 240 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑖 ∈ 𝑋 ) |
| 241 |
239 240
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
| 242 |
241
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
| 243 |
215 31
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
| 244 |
243
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
| 245 |
242 244
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐵 ) ) |
| 246 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 247 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐵 ) = ( ·𝑠 ‘ 𝐵 ) |
| 248 |
148 212 235 236 237 245 207 246 247 184
|
mptscmfsupp0 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) finSupp ( 0g ‘ 𝐵 ) ) |
| 249 |
207 214 148 219 232 248
|
gsumsubgcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ 𝑈 ) |
| 250 |
234
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 251 |
33 250
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 252 |
251
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑈 = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 253 |
249 252
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 254 |
253
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) : 𝑌 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 255 |
254
|
ffund |
⊢ ( 𝜑 → Fun ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ) |
| 256 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ) |
| 257 |
|
fconstmpt |
⊢ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 258 |
257
|
eqeq2i |
⊢ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 259 |
|
ovex |
⊢ ( 𝑘 𝑊 𝑖 ) ∈ V |
| 260 |
259
|
rgenw |
⊢ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) ∈ V |
| 261 |
|
mpteqb |
⊢ ( ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) ∈ V → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ↔ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 262 |
260 261
|
ax-mp |
⊢ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ↔ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 263 |
258 262
|
bitri |
⊢ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 264 |
263
|
necon3abii |
⊢ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ¬ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 265 |
|
df-ov |
⊢ ( 𝑘 𝑊 𝑖 ) = ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) |
| 266 |
265
|
eqcomi |
⊢ ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) = ( 𝑘 𝑊 𝑖 ) |
| 267 |
266
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) = ( 𝑘 𝑊 𝑖 ) ) |
| 268 |
267
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 269 |
268
|
necon3abid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ¬ ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 270 |
269
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( ∃ 𝑖 ∈ 𝑋 ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ∃ 𝑖 ∈ 𝑋 ¬ ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 271 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ 𝑋 ¬ ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ¬ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 272 |
270 271
|
bitr2di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( ¬ ∀ 𝑖 ∈ 𝑋 ( 𝑘 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ∃ 𝑖 ∈ 𝑋 ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 273 |
264 272
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ∃ 𝑖 ∈ 𝑋 ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 274 |
273
|
rabbidva |
⊢ ( 𝜑 → { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } = { 𝑘 ∈ 𝑌 ∣ ∃ 𝑖 ∈ 𝑋 ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 275 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑘 , 𝑖 〉 → ( 𝑊 ‘ 𝑧 ) = ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ) |
| 276 |
275
|
neeq1d |
⊢ ( 𝑧 = 〈 𝑘 , 𝑖 〉 → ( ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 277 |
276
|
dmrab |
⊢ dom { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } = { 𝑘 ∈ 𝑌 ∣ ∃ 𝑖 ∈ 𝑋 ( 𝑊 ‘ 〈 𝑘 , 𝑖 〉 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } |
| 278 |
274 277
|
eqtr4di |
⊢ ( 𝜑 → { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } = dom { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 279 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 280 |
|
suppvalfn |
⊢ ( ( 𝑊 Fn ( 𝑌 × 𝑋 ) ∧ ( 𝑌 × 𝑋 ) ∈ V ∧ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) → ( 𝑊 supp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) = { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 281 |
160 150 279 280
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 supp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) = { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 282 |
163
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑊 supp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ∈ Fin ) |
| 283 |
281 282
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ∈ Fin ) |
| 284 |
|
dmfi |
⊢ ( { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ∈ Fin → dom { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ∈ Fin ) |
| 285 |
283 284
|
syl |
⊢ ( 𝜑 → dom { 𝑧 ∈ ( 𝑌 × 𝑋 ) ∣ ( 𝑊 ‘ 𝑧 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ∈ Fin ) |
| 286 |
278 285
|
eqeltrd |
⊢ ( 𝜑 → { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ∈ Fin ) |
| 287 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 288 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑌 |
| 289 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) |
| 290 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 291 |
289 290
|
nfne |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) |
| 292 |
291 288
|
nfrabw |
⊢ Ⅎ 𝑖 { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } |
| 293 |
288 292
|
nfdif |
⊢ Ⅎ 𝑖 ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) |
| 294 |
293
|
nfcri |
⊢ Ⅎ 𝑖 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) |
| 295 |
287 294
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) |
| 296 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) |
| 297 |
296
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → 𝑗 ∈ 𝑌 ) |
| 298 |
296
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ¬ 𝑗 ∈ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) |
| 299 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 𝑊 𝑖 ) = ( 𝑗 𝑊 𝑖 ) ) |
| 300 |
299
|
mpteq2dv |
⊢ ( 𝑘 = 𝑗 → ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 301 |
300
|
neeq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 302 |
301
|
elrab |
⊢ ( 𝑗 ∈ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ↔ ( 𝑗 ∈ 𝑌 ∧ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 303 |
298 302
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ¬ ( 𝑗 ∈ 𝑌 ∧ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 304 |
297 303
|
mpnanrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ¬ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
| 305 |
|
nne |
⊢ ( ¬ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
| 306 |
304 305
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
| 307 |
306 257
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 308 |
|
ovex |
⊢ ( 𝑗 𝑊 𝑖 ) ∈ V |
| 309 |
308
|
rgenw |
⊢ ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) ∈ V |
| 310 |
|
mpteqb |
⊢ ( ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) ∈ V → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ↔ ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 311 |
309 310
|
ax-mp |
⊢ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ↔ ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 312 |
307 311
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 313 |
312
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 314 |
313
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) |
| 315 |
2 6 9
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐵 ) ) |
| 316 |
2 6 9
|
drgext0gsca |
⊢ ( 𝜑 → ( 0g ‘ 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 317 |
315 180 316
|
3eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 318 |
317
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 319 |
318
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) |
| 320 |
211
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐵 ∈ LMod ) |
| 321 |
297 245
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐵 ) ) |
| 322 |
|
eqid |
⊢ ( Scalar ‘ 𝐵 ) = ( Scalar ‘ 𝐵 ) |
| 323 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) |
| 324 |
236 322 247 323 207
|
lmod0vs |
⊢ ( ( 𝐵 ∈ LMod ∧ 𝑖 ∈ ( Base ‘ 𝐵 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( 0g ‘ 𝐵 ) ) |
| 325 |
320 321 324
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( 0g ‘ 𝐵 ) ) |
| 326 |
314 319 325
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) = ( 0g ‘ 𝐵 ) ) |
| 327 |
295 326
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ 𝐵 ) ) ) |
| 328 |
327
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ 𝐵 ) ) ) ) |
| 329 |
|
ablgrp |
⊢ ( 𝐵 ∈ Abel → 𝐵 ∈ Grp ) |
| 330 |
|
grpmnd |
⊢ ( 𝐵 ∈ Grp → 𝐵 ∈ Mnd ) |
| 331 |
211 213 329 330
|
4syl |
⊢ ( 𝜑 → 𝐵 ∈ Mnd ) |
| 332 |
207
|
gsumz |
⊢ ( ( 𝐵 ∈ Mnd ∧ 𝑋 ∈ ( LBasis ‘ 𝐶 ) ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ 𝐵 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 333 |
331 13 332
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ 𝐵 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 334 |
333
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ 𝐵 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 335 |
316
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 0g ‘ 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 336 |
328 334 335
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 337 |
336 14
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ⊆ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) |
| 338 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∧ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ) ∧ ( { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ∈ Fin ∧ ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ⊆ { 𝑘 ∈ 𝑌 ∣ ( 𝑖 ∈ 𝑋 ↦ ( 𝑘 𝑊 𝑖 ) ) ≠ ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) } ) ) → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 339 |
206 255 256 286 337 338
|
syl32anc |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 340 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ) |
| 341 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ V ) |
| 342 |
340 341
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 343 |
342
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 344 |
343
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) |
| 345 |
344
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 346 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 347 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 348 |
347
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) |
| 349 |
348
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) |
| 350 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 351 |
350
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) = ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) |
| 352 |
351
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) |
| 353 |
349 352
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) |
| 354 |
353
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 355 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 = 𝑗 ) |
| 356 |
346 354 355
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) = ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 357 |
204
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 358 |
356 357
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) = ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 359 |
358
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) |
| 360 |
359
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) ) = ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 361 |
1 29
|
sraring |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑉 ⊆ ( Base ‘ 𝐸 ) ) → 𝐴 ∈ Ring ) |
| 362 |
165 43 361
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 363 |
|
ringcmn |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ CMnd ) |
| 364 |
362 363
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ CMnd ) |
| 365 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝐸 ∈ Ring ) |
| 366 |
|
eqid |
⊢ ( LBasis ‘ 𝐵 ) = ( LBasis ‘ 𝐵 ) |
| 367 |
236 366
|
lbsss |
⊢ ( 𝑌 ∈ ( LBasis ‘ 𝐵 ) → 𝑌 ⊆ ( Base ‘ 𝐵 ) ) |
| 368 |
14 367
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ 𝐵 ) ) |
| 369 |
368 243
|
sseqtrrd |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ 𝐸 ) ) |
| 370 |
369
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑌 ⊆ ( Base ‘ 𝐸 ) ) |
| 371 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑗 ∈ 𝑌 ) |
| 372 |
370 371
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
| 373 |
29 74
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 374 |
365 241 372 373
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 375 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 376 |
374 375
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
| 377 |
376
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
| 378 |
11
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ↔ 𝐷 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 379 |
377 378
|
sylib |
⊢ ( 𝜑 → 𝐷 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 380 |
79 80 82 81 24 159 379 150
|
lcomf |
⊢ ( 𝜑 → ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 381 |
79 80 82 81 24 159 379 150 139 140 163
|
lcomfsupp |
⊢ ( 𝜑 → ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) finSupp ( 0g ‘ 𝐴 ) ) |
| 382 |
81 139 364 14 13 380 381
|
gsumxp |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) = ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) ) ) ) |
| 383 |
165
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ Ring ) |
| 384 |
159
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑊 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 385 |
64 62
|
eqtrd |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 386 |
385 43
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 387 |
68 386
|
eqsstrd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 388 |
387 44
|
sseqtrd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ⊆ ( Base ‘ 𝐴 ) ) |
| 389 |
388
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ⊆ ( Base ‘ 𝐴 ) ) |
| 390 |
384 389
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑊 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 391 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ 𝑌 ) |
| 392 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 393 |
390 391 392
|
fovcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ 𝐴 ) ) |
| 394 |
44
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 395 |
393 394
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
| 396 |
241
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
| 397 |
372
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
| 398 |
29 74
|
ringass |
⊢ ( ( 𝐸 ∈ Ring ∧ ( ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) ) → ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 399 |
383 395 396 397 398
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 400 |
399
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) |
| 401 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ V ) |
| 402 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) |
| 403 |
|
fnov |
⊢ ( 𝑊 Fn ( 𝑌 × 𝑋 ) ↔ 𝑊 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 404 |
160 403
|
sylib |
⊢ ( 𝜑 → 𝑊 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 405 |
11
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 406 |
14 13 401 402 404 405
|
offval22 |
⊢ ( 𝜑 → ( 𝑊 ∘f ( .r ‘ 𝐸 ) 𝐷 ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) |
| 407 |
50
|
ofeqd |
⊢ ( 𝜑 → ∘f ( .r ‘ 𝐸 ) = ∘f ( ·𝑠 ‘ 𝐴 ) ) |
| 408 |
407
|
oveqd |
⊢ ( 𝜑 → ( 𝑊 ∘f ( .r ‘ 𝐸 ) 𝐷 ) = ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) |
| 409 |
400 406 408
|
3eqtr2rd |
⊢ ( 𝜑 → ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 410 |
409
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 411 |
410
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) = ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) 𝑖 ) ) |
| 412 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ 𝑌 ) |
| 413 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) |
| 414 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 415 |
414
|
ovmpt4g |
⊢ ( ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ∧ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) → ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) 𝑖 ) = ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 416 |
412 224 413 415
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) 𝑖 ) = ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 417 |
411 416
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) = ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 418 |
417
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 419 |
418
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) |
| 420 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐸 ∈ Ring ) |
| 421 |
369
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
| 422 |
165
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ Ring ) |
| 423 |
386
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 424 |
423 222
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
| 425 |
29 74
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 𝑗 𝑊 𝑖 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ) → ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
| 426 |
422 424 242 425
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
| 427 |
315
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐵 ) ) |
| 428 |
248 352 427
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) finSupp ( 0g ‘ 𝐸 ) ) |
| 429 |
29 170 74 420 148 421 426 428
|
gsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) = ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 430 |
419 429
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) = ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 431 |
148
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ∈ V ) |
| 432 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐴 ∈ LMod ) |
| 433 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
| 434 |
1 431 197 432 433
|
gsumsra |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) ) |
| 435 |
148
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ∈ V ) |
| 436 |
1 435 197 432 433
|
gsumsra |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ) |
| 437 |
436
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 438 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 439 |
349
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ) |
| 440 |
438 439 355
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) |
| 441 |
437 440
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) |
| 442 |
430 434 441
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) = ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) |
| 443 |
442
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) ) |
| 444 |
443
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝑊 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) 𝑖 ) ) ) ) ) = ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) ) ) |
| 445 |
382 16 444
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 446 |
1 6 20
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐴 ) ) |
| 447 |
445 446 315
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐴 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 448 |
1 6 20 5 8 14
|
drgextgsum |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 449 |
2 6 9 4 7 14
|
drgextgsum |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 450 |
448 449
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 451 |
360 447 450
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 452 |
345 451
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) |
| 453 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ↔ ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
| 454 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 455 |
454
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) |
| 456 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( 𝑏 ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ) |
| 457 |
456
|
oveq1d |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 458 |
457
|
adantr |
⊢ ( ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 459 |
455 458
|
mpteq2da |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) |
| 460 |
459
|
oveq2d |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 461 |
460
|
eqeq1d |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ↔ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) ) |
| 462 |
453 461
|
anbi12d |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) ↔ ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) ) ) |
| 463 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( 𝑏 = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ↔ ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) |
| 464 |
462 463
|
imbi12d |
⊢ ( 𝑏 = ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) → ( ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → 𝑏 = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ↔ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) ) |
| 465 |
366
|
lbslinds |
⊢ ( LBasis ‘ 𝐵 ) ⊆ ( LIndS ‘ 𝐵 ) |
| 466 |
465 14
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ( LIndS ‘ 𝐵 ) ) |
| 467 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) |
| 468 |
236 467 322 247 207 323
|
islinds5 |
⊢ ( ( 𝐵 ∈ LMod ∧ 𝑌 ⊆ ( Base ‘ 𝐵 ) ) → ( 𝑌 ∈ ( LIndS ‘ 𝐵 ) ↔ ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → 𝑏 = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) ) |
| 469 |
468
|
biimpa |
⊢ ( ( ( 𝐵 ∈ LMod ∧ 𝑌 ⊆ ( Base ‘ 𝐵 ) ) ∧ 𝑌 ∈ ( LIndS ‘ 𝐵 ) ) → ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → 𝑏 = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) |
| 470 |
211 368 466 469
|
syl21anc |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝑏 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → 𝑏 = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) |
| 471 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ) |
| 472 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ∧ 𝑌 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ↔ ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) : 𝑌 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
| 473 |
472
|
biimpar |
⊢ ( ( ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ∧ 𝑌 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) : 𝑌 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ) |
| 474 |
471 14 254 473
|
syl21anc |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑌 ) ) |
| 475 |
464 470 474
|
rspcdva |
⊢ ( 𝜑 → ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 0g ‘ 𝐵 ) ) → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) ) |
| 476 |
339 452 475
|
mp2and |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) ) |
| 477 |
|
fconstmpt |
⊢ ( 𝑌 × { ( 0g ‘ ( Scalar ‘ 𝐵 ) ) } ) = ( 𝑗 ∈ 𝑌 ↦ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 478 |
476 477
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
| 479 |
|
ovex |
⊢ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ V |
| 480 |
479
|
rgenw |
⊢ ∀ 𝑗 ∈ 𝑌 ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ V |
| 481 |
|
mpteqb |
⊢ ( ∀ 𝑗 ∈ 𝑌 ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ∈ V → ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ↔ ∀ 𝑗 ∈ 𝑌 ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
| 482 |
480 481
|
ax-mp |
⊢ ( ( 𝑗 ∈ 𝑌 ↦ ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ↔ ∀ 𝑗 ∈ 𝑌 ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 483 |
478 482
|
sylib |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑌 ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 484 |
483
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑗 𝑊 𝑖 ) ( ·𝑠 ‘ 𝐵 ) 𝑖 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 485 |
315 446 316
|
3eqtr3rd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐴 ) ) |
| 486 |
485
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐴 ) ) |
| 487 |
205 484 486
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 488 |
186 487
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) ) |
| 489 |
189
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 490 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 491 |
490 148
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 492 |
489 491
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ) |
| 493 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 494 |
493
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 495 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) |
| 496 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) |
| 497 |
496
|
nfeq2 |
⊢ Ⅎ 𝑖 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) |
| 498 |
495 497
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 499 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) |
| 500 |
499
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑤 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ) |
| 501 |
500
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) = ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) |
| 502 |
498 501
|
mpteq2da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) |
| 503 |
502
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) ) |
| 504 |
503
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ↔ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) ) |
| 505 |
494 504
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) ↔ ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 506 |
493
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ↔ ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 507 |
505 506
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑤 = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ) → ( ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ↔ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) ) |
| 508 |
492 507
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ∀ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m 𝑋 ) ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑤 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑤 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) → ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐴 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐴 ) 𝑖 ) ) ) = ( 0g ‘ 𝐴 ) ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) ) |
| 509 |
144 488 508
|
mp2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
| 510 |
509 257
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 𝑊 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 511 |
510 311
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 512 |
511
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 513 |
|
eqidd |
⊢ ( ( 𝑗 = 𝑘 ∧ 𝑖 = 𝑙 ) → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 514 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 515 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ∧ 𝑙 ∈ 𝑋 ) → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 516 |
160 513 514 515
|
fnmpoovd |
⊢ ( 𝜑 → ( 𝑊 = ( 𝑘 ∈ 𝑌 , 𝑙 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ↔ ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑗 𝑊 𝑖 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 517 |
512 516
|
mpbird |
⊢ ( 𝜑 → 𝑊 = ( 𝑘 ∈ 𝑌 , 𝑙 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 518 |
|
fconstmpo |
⊢ ( ( 𝑌 × 𝑋 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) = ( 𝑘 ∈ 𝑌 , 𝑙 ∈ 𝑋 ↦ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 519 |
517 518
|
eqtr4di |
⊢ ( 𝜑 → 𝑊 = ( ( 𝑌 × 𝑋 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |