Step |
Hyp |
Ref |
Expression |
1 |
|
drgext.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
2 |
|
drgext.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
3 |
|
drgext.2 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
4 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
5 |
|
ringmnd |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ Mnd ) |
6 |
2 4 5
|
3syl |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
7 |
|
subrgsubg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ∈ ( SubGrp ‘ 𝐸 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
9 |
8
|
subg0cl |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ 𝑈 ) |
10 |
3 7 9
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝑈 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
12 |
11
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
14 |
|
eqid |
⊢ ( 𝐸 ↾s 𝑈 ) = ( 𝐸 ↾s 𝑈 ) |
15 |
14 11 8
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ 𝑈 ∧ 𝑈 ⊆ ( Base ‘ 𝐸 ) ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s 𝑈 ) ) ) |
16 |
6 10 13 15
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s 𝑈 ) ) ) |
17 |
1 2 3
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐵 ) ) |
18 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
19 |
18 13
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐸 ↾s 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
21 |
16 17 20
|
3eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |