Description: The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drgext.b | ⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) | |
| drgext.1 | ⊢ ( 𝜑 → 𝐸 ∈ DivRing ) | ||
| drgext.2 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) | ||
| drgext.f | ⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) | ||
| drgext.3 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | ||
| Assertion | drgextsubrg | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drgext.b | ⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) | |
| 2 | drgext.1 | ⊢ ( 𝜑 → 𝐸 ∈ DivRing ) | |
| 3 | drgext.2 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) | |
| 4 | drgext.f | ⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) | |
| 5 | drgext.3 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | |
| 6 | 1 | a1i | ⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 8 | 7 | subrgss | ⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 10 | 6 3 9 | srasubrg | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐵 ) ) |