Metamath Proof Explorer


Theorem drgextsubrg

Description: The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 )
drgext.1 ( 𝜑𝐸 ∈ DivRing )
drgext.2 ( 𝜑𝑈 ∈ ( SubRing ‘ 𝐸 ) )
drgext.f 𝐹 = ( 𝐸s 𝑈 )
drgext.3 ( 𝜑𝐹 ∈ DivRing )
Assertion drgextsubrg ( 𝜑𝑈 ∈ ( SubRing ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 drgext.b 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 )
2 drgext.1 ( 𝜑𝐸 ∈ DivRing )
3 drgext.2 ( 𝜑𝑈 ∈ ( SubRing ‘ 𝐸 ) )
4 drgext.f 𝐹 = ( 𝐸s 𝑈 )
5 drgext.3 ( 𝜑𝐹 ∈ DivRing )
6 1 a1i ( 𝜑𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) )
7 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
8 7 subrgss ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) )
9 3 8 syl ( 𝜑𝑈 ⊆ ( Base ‘ 𝐸 ) )
10 6 3 9 srasubrg ( 𝜑𝑈 ∈ ( SubRing ‘ 𝐵 ) )