| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drgext.b | ⊢ 𝐵  =  ( ( subringAlg  ‘ 𝐸 ) ‘ 𝑈 ) | 
						
							| 2 |  | drgext.1 | ⊢ ( 𝜑  →  𝐸  ∈  DivRing ) | 
						
							| 3 |  | drgext.2 | ⊢ ( 𝜑  →  𝑈  ∈  ( SubRing ‘ 𝐸 ) ) | 
						
							| 4 |  | drgext.f | ⊢ 𝐹  =  ( 𝐸  ↾s  𝑈 ) | 
						
							| 5 |  | drgext.3 | ⊢ ( 𝜑  →  𝐹  ∈  DivRing ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐵 )  =  ( Scalar ‘ 𝐵 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐵 ) )  =  ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐵 )  =  ( Base ‘ 𝐵 ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝐵 )  =  ( +g ‘ 𝐵 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝐵 )  =  (  ·𝑠  ‘ 𝐵 ) ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝐵 )  =  ( LSubSp ‘ 𝐵 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 ) | 
						
							| 13 | 12 | subrgss | ⊢ ( 𝑈  ∈  ( SubRing ‘ 𝐸 )  →  𝑈  ⊆  ( Base ‘ 𝐸 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  ( Base ‘ 𝐸 ) ) | 
						
							| 15 | 1 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( ( subringAlg  ‘ 𝐸 ) ‘ 𝑈 ) ) | 
						
							| 16 | 15 14 | srabase | ⊢ ( 𝜑  →  ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐵 ) ) | 
						
							| 17 | 14 16 | sseqtrd | ⊢ ( 𝜑  →  𝑈  ⊆  ( Base ‘ 𝐵 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 1r ‘ 𝐸 )  =  ( 1r ‘ 𝐸 ) | 
						
							| 19 | 18 | subrg1cl | ⊢ ( 𝑈  ∈  ( SubRing ‘ 𝐸 )  →  ( 1r ‘ 𝐸 )  ∈  𝑈 ) | 
						
							| 20 |  | ne0i | ⊢ ( ( 1r ‘ 𝐸 )  ∈  𝑈  →  𝑈  ≠  ∅ ) | 
						
							| 21 | 3 19 20 | 3syl | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 22 |  | drnggrp | ⊢ ( 𝐹  ∈  DivRing  →  𝐹  ∈  Grp ) | 
						
							| 23 | 5 22 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Grp ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝐹  ∈  Grp ) | 
						
							| 25 | 15 14 | sravsca | ⊢ ( 𝜑  →  ( .r ‘ 𝐸 )  =  (  ·𝑠  ‘ 𝐵 ) ) | 
						
							| 26 |  | eqid | ⊢ ( .r ‘ 𝐸 )  =  ( .r ‘ 𝐸 ) | 
						
							| 27 | 4 26 | ressmulr | ⊢ ( 𝑈  ∈  ( SubRing ‘ 𝐸 )  →  ( .r ‘ 𝐸 )  =  ( .r ‘ 𝐹 ) ) | 
						
							| 28 | 3 27 | syl | ⊢ ( 𝜑  →  ( .r ‘ 𝐸 )  =  ( .r ‘ 𝐹 ) ) | 
						
							| 29 | 25 28 | eqtr3d | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝐵 )  =  ( .r ‘ 𝐹 ) ) | 
						
							| 30 | 29 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 )  =  ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 ) ) | 
						
							| 31 |  | drngring | ⊢ ( 𝐹  ∈  DivRing  →  𝐹  ∈  Ring ) | 
						
							| 32 | 5 31 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Ring ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝐹  ∈  Ring ) | 
						
							| 34 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) | 
						
							| 35 | 15 14 | srasca | ⊢ ( 𝜑  →  ( 𝐸  ↾s  𝑈 )  =  ( Scalar ‘ 𝐵 ) ) | 
						
							| 36 | 4 35 | eqtrid | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐵 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) | 
						
							| 39 | 34 38 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑥  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 40 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑎  ∈  𝑈 ) | 
						
							| 41 | 4 12 | ressbas2 | ⊢ ( 𝑈  ⊆  ( Base ‘ 𝐸 )  →  𝑈  =  ( Base ‘ 𝐹 ) ) | 
						
							| 42 | 14 41 | syl | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ 𝐹 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑈  =  ( Base ‘ 𝐹 ) ) | 
						
							| 44 | 40 43 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑎  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 45 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 46 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 47 | 45 46 | ringcl | ⊢ ( ( 𝐹  ∈  Ring  ∧  𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑎  ∈  ( Base ‘ 𝐹 ) )  →  ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 48 | 33 39 44 47 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 49 | 30 48 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 50 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑏  ∈  𝑈 ) | 
						
							| 51 | 50 43 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  𝑏  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 52 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 53 | 45 52 | grpcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 )  ∈  ( Base ‘ 𝐹 )  ∧  𝑏  ∈  ( Base ‘ 𝐹 ) )  →  ( ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 54 | 24 49 51 53 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 55 | 15 14 | sraaddg | ⊢ ( 𝜑  →  ( +g ‘ 𝐸 )  =  ( +g ‘ 𝐵 ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ 𝐸 )  =  ( +g ‘ 𝐸 ) | 
						
							| 57 | 4 56 | ressplusg | ⊢ ( 𝑈  ∈  ( SubRing ‘ 𝐸 )  →  ( +g ‘ 𝐸 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 58 | 3 57 | syl | ⊢ ( 𝜑  →  ( +g ‘ 𝐸 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 59 | 55 58 | eqtr3d | ⊢ ( 𝜑  →  ( +g ‘ 𝐵 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( +g ‘ 𝐵 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 61 | 60 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐵 ) 𝑏 )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 ) ) | 
						
							| 62 | 54 61 43 | 3eltr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝐵 ) )  ∧  𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( ( 𝑥 (  ·𝑠  ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐵 ) 𝑏 )  ∈  𝑈 ) | 
						
							| 63 | 6 7 8 9 10 11 17 21 62 | islssd | ⊢ ( 𝜑  →  𝑈  ∈  ( LSubSp ‘ 𝐵 ) ) |