| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drgext.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 2 |
|
drgext.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 3 |
|
drgext.2 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 4 |
|
drgext.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 5 |
|
drgext.3 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐵 ) = ( Scalar ‘ 𝐵 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐵 ) = ( +g ‘ 𝐵 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐵 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐵 ) = ( LSubSp ‘ 𝐵 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 13 |
12
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 15 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
| 16 |
15 14
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
| 17 |
14 16
|
sseqtrd |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐵 ) ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
| 19 |
18
|
subrg1cl |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) ∈ 𝑈 ) |
| 20 |
|
ne0i |
⊢ ( ( 1r ‘ 𝐸 ) ∈ 𝑈 → 𝑈 ≠ ∅ ) |
| 21 |
3 19 20
|
3syl |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
| 22 |
|
drnggrp |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Grp ) |
| 23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝐹 ∈ Grp ) |
| 25 |
15 14
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 27 |
4 26
|
ressmulr |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
| 28 |
3 27
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
| 29 |
25 28
|
eqtr3d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐵 ) = ( .r ‘ 𝐹 ) ) |
| 30 |
29
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) = ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 ) ) |
| 31 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
| 32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝐹 ∈ Ring ) |
| 34 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 35 |
15 14
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
| 36 |
4 35
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 39 |
34 38
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
| 40 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑈 ) |
| 41 |
4 12
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐸 ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 42 |
14 41
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 44 |
40 43
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ 𝐹 ) ) |
| 45 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 46 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 47 |
45 46
|
ringcl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑎 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) |
| 48 |
33 39 44 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝐹 ) 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) |
| 49 |
30 48
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) |
| 50 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) |
| 51 |
50 43
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝐹 ) ) |
| 52 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 53 |
45 52
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑏 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 ) ∈ ( Base ‘ 𝐹 ) ) |
| 54 |
24 49 51 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 ) ∈ ( Base ‘ 𝐹 ) ) |
| 55 |
15 14
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐵 ) ) |
| 56 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
| 57 |
4 56
|
ressplusg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐹 ) ) |
| 58 |
3 57
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝐸 ) = ( +g ‘ 𝐹 ) ) |
| 59 |
55 58
|
eqtr3d |
⊢ ( 𝜑 → ( +g ‘ 𝐵 ) = ( +g ‘ 𝐹 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( +g ‘ 𝐵 ) = ( +g ‘ 𝐹 ) ) |
| 61 |
60
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐵 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐹 ) 𝑏 ) ) |
| 62 |
54 61 43
|
3eltr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐵 ) 𝑎 ) ( +g ‘ 𝐵 ) 𝑏 ) ∈ 𝑈 ) |
| 63 |
6 7 8 9 10 11 17 21 62
|
islssd |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝐵 ) ) |