| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drgext.b |  |-  B = ( ( subringAlg ` E ) ` U ) | 
						
							| 2 |  | drgext.1 |  |-  ( ph -> E e. DivRing ) | 
						
							| 3 |  | drgext.2 |  |-  ( ph -> U e. ( SubRing ` E ) ) | 
						
							| 4 |  | drgext.f |  |-  F = ( E |`s U ) | 
						
							| 5 |  | drgext.3 |  |-  ( ph -> F e. DivRing ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( Scalar ` B ) = ( Scalar ` B ) ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( Base ` ( Scalar ` B ) ) = ( Base ` ( Scalar ` B ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` B ) = ( Base ` B ) ) | 
						
							| 9 |  | eqidd |  |-  ( ph -> ( +g ` B ) = ( +g ` B ) ) | 
						
							| 10 |  | eqidd |  |-  ( ph -> ( .s ` B ) = ( .s ` B ) ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> ( LSubSp ` B ) = ( LSubSp ` B ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` E ) = ( Base ` E ) | 
						
							| 13 | 12 | subrgss |  |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> U C_ ( Base ` E ) ) | 
						
							| 15 | 1 | a1i |  |-  ( ph -> B = ( ( subringAlg ` E ) ` U ) ) | 
						
							| 16 | 15 14 | srabase |  |-  ( ph -> ( Base ` E ) = ( Base ` B ) ) | 
						
							| 17 | 14 16 | sseqtrd |  |-  ( ph -> U C_ ( Base ` B ) ) | 
						
							| 18 |  | eqid |  |-  ( 1r ` E ) = ( 1r ` E ) | 
						
							| 19 | 18 | subrg1cl |  |-  ( U e. ( SubRing ` E ) -> ( 1r ` E ) e. U ) | 
						
							| 20 |  | ne0i |  |-  ( ( 1r ` E ) e. U -> U =/= (/) ) | 
						
							| 21 | 3 19 20 | 3syl |  |-  ( ph -> U =/= (/) ) | 
						
							| 22 |  | drnggrp |  |-  ( F e. DivRing -> F e. Grp ) | 
						
							| 23 | 5 22 | syl |  |-  ( ph -> F e. Grp ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> F e. Grp ) | 
						
							| 25 | 15 14 | sravsca |  |-  ( ph -> ( .r ` E ) = ( .s ` B ) ) | 
						
							| 26 |  | eqid |  |-  ( .r ` E ) = ( .r ` E ) | 
						
							| 27 | 4 26 | ressmulr |  |-  ( U e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` F ) ) | 
						
							| 28 | 3 27 | syl |  |-  ( ph -> ( .r ` E ) = ( .r ` F ) ) | 
						
							| 29 | 25 28 | eqtr3d |  |-  ( ph -> ( .s ` B ) = ( .r ` F ) ) | 
						
							| 30 | 29 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` B ) a ) = ( x ( .r ` F ) a ) ) | 
						
							| 31 |  | drngring |  |-  ( F e. DivRing -> F e. Ring ) | 
						
							| 32 | 5 31 | syl |  |-  ( ph -> F e. Ring ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> F e. Ring ) | 
						
							| 34 |  | simpr1 |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` B ) ) ) | 
						
							| 35 | 15 14 | srasca |  |-  ( ph -> ( E |`s U ) = ( Scalar ` B ) ) | 
						
							| 36 | 4 35 | eqtrid |  |-  ( ph -> F = ( Scalar ` B ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` B ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( Base ` F ) = ( Base ` ( Scalar ` B ) ) ) | 
						
							| 39 | 34 38 | eleqtrrd |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` F ) ) | 
						
							| 40 |  | simpr2 |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) | 
						
							| 41 | 4 12 | ressbas2 |  |-  ( U C_ ( Base ` E ) -> U = ( Base ` F ) ) | 
						
							| 42 | 14 41 | syl |  |-  ( ph -> U = ( Base ` F ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> U = ( Base ` F ) ) | 
						
							| 44 | 40 43 | eleqtrd |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> a e. ( Base ` F ) ) | 
						
							| 45 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 46 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 47 | 45 46 | ringcl |  |-  ( ( F e. Ring /\ x e. ( Base ` F ) /\ a e. ( Base ` F ) ) -> ( x ( .r ` F ) a ) e. ( Base ` F ) ) | 
						
							| 48 | 33 39 44 47 | syl3anc |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .r ` F ) a ) e. ( Base ` F ) ) | 
						
							| 49 | 30 48 | eqeltrd |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` B ) a ) e. ( Base ` F ) ) | 
						
							| 50 |  | simpr3 |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) | 
						
							| 51 | 50 43 | eleqtrd |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> b e. ( Base ` F ) ) | 
						
							| 52 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 53 | 45 52 | grpcl |  |-  ( ( F e. Grp /\ ( x ( .s ` B ) a ) e. ( Base ` F ) /\ b e. ( Base ` F ) ) -> ( ( x ( .s ` B ) a ) ( +g ` F ) b ) e. ( Base ` F ) ) | 
						
							| 54 | 24 49 51 53 | syl3anc |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` F ) b ) e. ( Base ` F ) ) | 
						
							| 55 | 15 14 | sraaddg |  |-  ( ph -> ( +g ` E ) = ( +g ` B ) ) | 
						
							| 56 |  | eqid |  |-  ( +g ` E ) = ( +g ` E ) | 
						
							| 57 | 4 56 | ressplusg |  |-  ( U e. ( SubRing ` E ) -> ( +g ` E ) = ( +g ` F ) ) | 
						
							| 58 | 3 57 | syl |  |-  ( ph -> ( +g ` E ) = ( +g ` F ) ) | 
						
							| 59 | 55 58 | eqtr3d |  |-  ( ph -> ( +g ` B ) = ( +g ` F ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( +g ` B ) = ( +g ` F ) ) | 
						
							| 61 | 60 | oveqd |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` B ) b ) = ( ( x ( .s ` B ) a ) ( +g ` F ) b ) ) | 
						
							| 62 | 54 61 43 | 3eltr4d |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` B ) b ) e. U ) | 
						
							| 63 | 6 7 8 9 10 11 17 21 62 | islssd |  |-  ( ph -> U e. ( LSubSp ` B ) ) |