| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drgext.b |
|- B = ( ( subringAlg ` E ) ` U ) |
| 2 |
|
drgext.1 |
|- ( ph -> E e. DivRing ) |
| 3 |
|
drgext.2 |
|- ( ph -> U e. ( SubRing ` E ) ) |
| 4 |
|
drgext.f |
|- F = ( E |`s U ) |
| 5 |
|
drgext.3 |
|- ( ph -> F e. DivRing ) |
| 6 |
|
eqidd |
|- ( ph -> ( Scalar ` B ) = ( Scalar ` B ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( Base ` ( Scalar ` B ) ) = ( Base ` ( Scalar ` B ) ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( Base ` B ) = ( Base ` B ) ) |
| 9 |
|
eqidd |
|- ( ph -> ( +g ` B ) = ( +g ` B ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( .s ` B ) = ( .s ` B ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( LSubSp ` B ) = ( LSubSp ` B ) ) |
| 12 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 13 |
12
|
subrgss |
|- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
| 14 |
3 13
|
syl |
|- ( ph -> U C_ ( Base ` E ) ) |
| 15 |
1
|
a1i |
|- ( ph -> B = ( ( subringAlg ` E ) ` U ) ) |
| 16 |
15 14
|
srabase |
|- ( ph -> ( Base ` E ) = ( Base ` B ) ) |
| 17 |
14 16
|
sseqtrd |
|- ( ph -> U C_ ( Base ` B ) ) |
| 18 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 19 |
18
|
subrg1cl |
|- ( U e. ( SubRing ` E ) -> ( 1r ` E ) e. U ) |
| 20 |
|
ne0i |
|- ( ( 1r ` E ) e. U -> U =/= (/) ) |
| 21 |
3 19 20
|
3syl |
|- ( ph -> U =/= (/) ) |
| 22 |
|
drnggrp |
|- ( F e. DivRing -> F e. Grp ) |
| 23 |
5 22
|
syl |
|- ( ph -> F e. Grp ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> F e. Grp ) |
| 25 |
15 14
|
sravsca |
|- ( ph -> ( .r ` E ) = ( .s ` B ) ) |
| 26 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
| 27 |
4 26
|
ressmulr |
|- ( U e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` F ) ) |
| 28 |
3 27
|
syl |
|- ( ph -> ( .r ` E ) = ( .r ` F ) ) |
| 29 |
25 28
|
eqtr3d |
|- ( ph -> ( .s ` B ) = ( .r ` F ) ) |
| 30 |
29
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` B ) a ) = ( x ( .r ` F ) a ) ) |
| 31 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
| 32 |
5 31
|
syl |
|- ( ph -> F e. Ring ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> F e. Ring ) |
| 34 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` B ) ) ) |
| 35 |
15 14
|
srasca |
|- ( ph -> ( E |`s U ) = ( Scalar ` B ) ) |
| 36 |
4 35
|
eqtrid |
|- ( ph -> F = ( Scalar ` B ) ) |
| 37 |
36
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` B ) ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( Base ` F ) = ( Base ` ( Scalar ` B ) ) ) |
| 39 |
34 38
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` F ) ) |
| 40 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) |
| 41 |
4 12
|
ressbas2 |
|- ( U C_ ( Base ` E ) -> U = ( Base ` F ) ) |
| 42 |
14 41
|
syl |
|- ( ph -> U = ( Base ` F ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> U = ( Base ` F ) ) |
| 44 |
40 43
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> a e. ( Base ` F ) ) |
| 45 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 46 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 47 |
45 46
|
ringcl |
|- ( ( F e. Ring /\ x e. ( Base ` F ) /\ a e. ( Base ` F ) ) -> ( x ( .r ` F ) a ) e. ( Base ` F ) ) |
| 48 |
33 39 44 47
|
syl3anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .r ` F ) a ) e. ( Base ` F ) ) |
| 49 |
30 48
|
eqeltrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` B ) a ) e. ( Base ` F ) ) |
| 50 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) |
| 51 |
50 43
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> b e. ( Base ` F ) ) |
| 52 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 53 |
45 52
|
grpcl |
|- ( ( F e. Grp /\ ( x ( .s ` B ) a ) e. ( Base ` F ) /\ b e. ( Base ` F ) ) -> ( ( x ( .s ` B ) a ) ( +g ` F ) b ) e. ( Base ` F ) ) |
| 54 |
24 49 51 53
|
syl3anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` F ) b ) e. ( Base ` F ) ) |
| 55 |
15 14
|
sraaddg |
|- ( ph -> ( +g ` E ) = ( +g ` B ) ) |
| 56 |
|
eqid |
|- ( +g ` E ) = ( +g ` E ) |
| 57 |
4 56
|
ressplusg |
|- ( U e. ( SubRing ` E ) -> ( +g ` E ) = ( +g ` F ) ) |
| 58 |
3 57
|
syl |
|- ( ph -> ( +g ` E ) = ( +g ` F ) ) |
| 59 |
55 58
|
eqtr3d |
|- ( ph -> ( +g ` B ) = ( +g ` F ) ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( +g ` B ) = ( +g ` F ) ) |
| 61 |
60
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` B ) b ) = ( ( x ( .s ` B ) a ) ( +g ` F ) b ) ) |
| 62 |
54 61 43
|
3eltr4d |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` B ) ) /\ a e. U /\ b e. U ) ) -> ( ( x ( .s ` B ) a ) ( +g ` B ) b ) e. U ) |
| 63 |
6 7 8 9 10 11 17 21 62
|
islssd |
|- ( ph -> U e. ( LSubSp ` B ) ) |