Description: The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
drgext.1 | |- ( ph -> E e. DivRing ) |
||
drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
||
drgext.f | |- F = ( E |`s U ) |
||
drgext.3 | |- ( ph -> F e. DivRing ) |
||
Assertion | drgextsubrg | |- ( ph -> U e. ( SubRing ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
2 | drgext.1 | |- ( ph -> E e. DivRing ) |
|
3 | drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
|
4 | drgext.f | |- F = ( E |`s U ) |
|
5 | drgext.3 | |- ( ph -> F e. DivRing ) |
|
6 | 1 | a1i | |- ( ph -> B = ( ( subringAlg ` E ) ` U ) ) |
7 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
8 | 7 | subrgss | |- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
9 | 3 8 | syl | |- ( ph -> U C_ ( Base ` E ) ) |
10 | 6 3 9 | srasubrg | |- ( ph -> U e. ( SubRing ` B ) ) |