Metamath Proof Explorer


Theorem drgextsubrg

Description: The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b
|- B = ( ( subringAlg ` E ) ` U )
drgext.1
|- ( ph -> E e. DivRing )
drgext.2
|- ( ph -> U e. ( SubRing ` E ) )
drgext.f
|- F = ( E |`s U )
drgext.3
|- ( ph -> F e. DivRing )
Assertion drgextsubrg
|- ( ph -> U e. ( SubRing ` B ) )

Proof

Step Hyp Ref Expression
1 drgext.b
 |-  B = ( ( subringAlg ` E ) ` U )
2 drgext.1
 |-  ( ph -> E e. DivRing )
3 drgext.2
 |-  ( ph -> U e. ( SubRing ` E ) )
4 drgext.f
 |-  F = ( E |`s U )
5 drgext.3
 |-  ( ph -> F e. DivRing )
6 1 a1i
 |-  ( ph -> B = ( ( subringAlg ` E ) ` U ) )
7 eqid
 |-  ( Base ` E ) = ( Base ` E )
8 7 subrgss
 |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) )
9 3 8 syl
 |-  ( ph -> U C_ ( Base ` E ) )
10 6 3 9 srasubrg
 |-  ( ph -> U e. ( SubRing ` B ) )