Metamath Proof Explorer


Theorem drgextsubrg

Description: The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B = subringAlg E U
drgext.1 φ E DivRing
drgext.2 φ U SubRing E
drgext.f F = E 𝑠 U
drgext.3 φ F DivRing
Assertion drgextsubrg φ U SubRing B

Proof

Step Hyp Ref Expression
1 drgext.b B = subringAlg E U
2 drgext.1 φ E DivRing
3 drgext.2 φ U SubRing E
4 drgext.f F = E 𝑠 U
5 drgext.3 φ F DivRing
6 1 a1i φ B = subringAlg E U
7 eqid Base E = Base E
8 7 subrgss U SubRing E U Base E
9 3 8 syl φ U Base E
10 6 3 9 srasubrg φ U SubRing B