Metamath Proof Explorer
Description: Eliminate the right side of a negated conjunction in an implication.
(Contributed by ML, 17-Oct-2020)
|
|
Ref |
Expression |
|
Hypotheses |
mpnanrd.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
mpnanrd.2 |
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
mpnanrd |
⊢ ( 𝜑 → ¬ 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpnanrd.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
mpnanrd.2 |
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) |
3 |
|
imnan |
⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
4 |
2 3
|
sylibr |
⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) |
5 |
1 4
|
mpd |
⊢ ( 𝜑 → ¬ 𝜒 ) |