Metamath Proof Explorer


Theorem mpnanrd

Description: Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020)

Ref Expression
Hypotheses mpnanrd.1
|- ( ph -> ps )
mpnanrd.2
|- ( ph -> -. ( ps /\ ch ) )
Assertion mpnanrd
|- ( ph -> -. ch )

Proof

Step Hyp Ref Expression
1 mpnanrd.1
 |-  ( ph -> ps )
2 mpnanrd.2
 |-  ( ph -> -. ( ps /\ ch ) )
3 imnan
 |-  ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) )
4 2 3 sylibr
 |-  ( ph -> ( ps -> -. ch ) )
5 1 4 mpd
 |-  ( ph -> -. ch )