| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnmpoovd.m |
⊢ ( 𝜑 → 𝑀 Fn ( 𝐴 × 𝐵 ) ) |
| 2 |
|
fnmpoovd.s |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → 𝐷 = 𝐶 ) |
| 3 |
|
fnmpoovd.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) → 𝐷 ∈ 𝑈 ) |
| 4 |
|
fnmpoovd.c |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
| 5 |
4
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
| 6 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝐶 ∈ 𝑉 ) |
| 7 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) |
| 8 |
7
|
fnmpo |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝐶 ∈ 𝑉 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) ) |
| 10 |
|
eqfnov2 |
⊢ ( ( 𝑀 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) ) → ( 𝑀 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑗 ) ) ) |
| 11 |
1 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑗 ) ) ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐷 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐷 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐶 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
| 16 |
12 13 14 15 2
|
cbvmpo |
⊢ ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) |
| 17 |
16
|
eqcomi |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) ) |
| 19 |
18
|
oveqd |
⊢ ( 𝜑 → ( 𝑖 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑗 ) = ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑗 ) ↔ ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) ) ) |
| 21 |
20
|
2ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑗 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) ) ) |
| 22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑖 ∈ 𝐴 ) |
| 23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑗 ∈ 𝐵 ) |
| 24 |
3
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝐷 ∈ 𝑈 ) |
| 25 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) |
| 26 |
25
|
ovmpt4g |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ∧ 𝐷 ∈ 𝑈 ) → ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) = 𝐷 ) |
| 27 |
22 23 24 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) = 𝐷 ) |
| 28 |
27
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → ( ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) ↔ ( 𝑖 𝑀 𝑗 ) = 𝐷 ) ) |
| 29 |
28
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = ( 𝑖 ( 𝑖 ∈ 𝐴 , 𝑗 ∈ 𝐵 ↦ 𝐷 ) 𝑗 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = 𝐷 ) ) |
| 30 |
11 21 29
|
3bitrd |
⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐵 ( 𝑖 𝑀 𝑗 ) = 𝐷 ) ) |