Metamath Proof Explorer


Theorem fnmpoovd

Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses fnmpoovd.m φMFnA×B
fnmpoovd.s i=aj=bD=C
fnmpoovd.d φiAjBDU
fnmpoovd.c φaAbBCV
Assertion fnmpoovd φM=aA,bBCiAjBiMj=D

Proof

Step Hyp Ref Expression
1 fnmpoovd.m φMFnA×B
2 fnmpoovd.s i=aj=bD=C
3 fnmpoovd.d φiAjBDU
4 fnmpoovd.c φaAbBCV
5 4 3expb φaAbBCV
6 5 ralrimivva φaAbBCV
7 eqid aA,bBC=aA,bBC
8 7 fnmpo aAbBCVaA,bBCFnA×B
9 6 8 syl φaA,bBCFnA×B
10 eqfnov2 MFnA×BaA,bBCFnA×BM=aA,bBCiAjBiMj=iaA,bBCj
11 1 9 10 syl2anc φM=aA,bBCiAjBiMj=iaA,bBCj
12 nfcv _aD
13 nfcv _bD
14 nfcv _iC
15 nfcv _jC
16 12 13 14 15 2 cbvmpo iA,jBD=aA,bBC
17 16 eqcomi aA,bBC=iA,jBD
18 17 a1i φaA,bBC=iA,jBD
19 18 oveqd φiaA,bBCj=iiA,jBDj
20 19 eqeq2d φiMj=iaA,bBCjiMj=iiA,jBDj
21 20 2ralbidv φiAjBiMj=iaA,bBCjiAjBiMj=iiA,jBDj
22 simprl φiAjBiA
23 simprr φiAjBjB
24 3 3expb φiAjBDU
25 eqid iA,jBD=iA,jBD
26 25 ovmpt4g iAjBDUiiA,jBDj=D
27 22 23 24 26 syl3anc φiAjBiiA,jBDj=D
28 27 eqeq2d φiAjBiMj=iiA,jBDjiMj=D
29 28 2ralbidva φiAjBiMj=iiA,jBDjiAjBiMj=D
30 11 21 29 3bitrd φM=aA,bBCiAjBiMj=D