Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
2 |
|
hashxp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
4 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
5 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
6 |
4 5
|
sselid |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
8 |
4 7
|
sselid |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
9 |
6 8
|
anim12i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
10 |
1 9
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
11 |
|
rexmul |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
13 |
3 12
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
15 |
14
|
xpeq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
16 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
18 |
17
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
19 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = 0 ) |
21 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
22 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
23 |
21 22
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
25 |
14
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ∅ ) ) |
26 |
25 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐵 ) = 0 ) |
27 |
24 26
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( +∞ ·e 0 ) ) |
28 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
29 |
|
xmul01 |
⊢ ( +∞ ∈ ℝ* → ( +∞ ·e 0 ) = 0 ) |
30 |
28 29
|
ax-mp |
⊢ ( +∞ ·e 0 ) = 0 |
31 |
27 30
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = 0 ) |
32 |
20 31
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
33 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ 𝑊 ) |
35 |
|
hashxrcl |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
36 |
34 35
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
37 |
|
hashgt0 |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
38 |
34 37
|
sylancom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
39 |
|
xmulpnf2 |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ 0 < ( ♯ ‘ 𝐵 ) ) → ( +∞ ·e ( ♯ ‘ 𝐵 ) ) = +∞ ) |
40 |
36 38 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( +∞ ·e ( ♯ ‘ 𝐵 ) ) = +∞ ) |
41 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
42 |
41
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( +∞ ·e ( ♯ ‘ 𝐵 ) ) ) |
43 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
44 |
43 34
|
xpexd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ∈ V ) |
45 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ 𝐴 ∈ Fin ) |
46 |
|
0fin |
⊢ ∅ ∈ Fin |
47 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ Fin ↔ ∅ ∈ Fin ) ) |
48 |
46 47
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
49 |
48
|
necon3bi |
⊢ ( ¬ 𝐴 ∈ Fin → 𝐴 ≠ ∅ ) |
50 |
45 49
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
51 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
52 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
53 |
|
xpeq0 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
54 |
53
|
necon3abii |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
55 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
56 |
|
df-ne |
⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) |
57 |
55 56
|
anbi12i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
58 |
52 54 57
|
3bitr4i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
59 |
58
|
biimpri |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
60 |
50 51 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
61 |
45
|
intnanrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
62 |
|
pm4.61 |
⊢ ( ¬ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ↔ ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
63 |
|
xpfir |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
64 |
63
|
ex |
⊢ ( ( 𝐴 × 𝐵 ) ∈ Fin → ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
65 |
64
|
con3i |
⊢ ( ¬ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
66 |
62 65
|
sylbir |
⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
67 |
60 61 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
68 |
|
hashinf |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ V ∧ ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
69 |
44 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
70 |
40 42 69
|
3eqtr4rd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
71 |
|
exmidne |
⊢ ( 𝐵 = ∅ ∨ 𝐵 ≠ ∅ ) |
72 |
71
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 = ∅ ∨ 𝐵 ≠ ∅ ) ) |
73 |
32 70 72
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
74 |
73
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
75 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
76 |
75
|
xpeq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
77 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
78 |
76 77
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
79 |
78
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
80 |
79 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = 0 ) |
81 |
75
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) |
82 |
81 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = 0 ) |
83 |
|
hashinf |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
84 |
33 83
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
85 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
86 |
82 85
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( 0 ·e +∞ ) ) |
87 |
|
xmul02 |
⊢ ( +∞ ∈ ℝ* → ( 0 ·e +∞ ) = 0 ) |
88 |
28 87
|
ax-mp |
⊢ ( 0 ·e +∞ ) = 0 |
89 |
86 88
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = 0 ) |
90 |
80 89
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
91 |
|
hashxrcl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
92 |
91
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
93 |
|
hashgt0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
94 |
93
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
95 |
|
xmulpnf1 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) ·e +∞ ) = +∞ ) |
96 |
92 94 95
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e +∞ ) = +∞ ) |
97 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
98 |
97
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e +∞ ) ) |
99 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
100 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝑊 ) |
101 |
99 100
|
xpexd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ∈ V ) |
102 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
103 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ 𝐵 ∈ Fin ) |
104 |
|
eleq1 |
⊢ ( 𝐵 = ∅ → ( 𝐵 ∈ Fin ↔ ∅ ∈ Fin ) ) |
105 |
46 104
|
mpbiri |
⊢ ( 𝐵 = ∅ → 𝐵 ∈ Fin ) |
106 |
105
|
necon3bi |
⊢ ( ¬ 𝐵 ∈ Fin → 𝐵 ≠ ∅ ) |
107 |
103 106
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
108 |
102 107 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
109 |
103
|
intnand |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
110 |
108 109 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
111 |
101 110 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
112 |
96 98 111
|
3eqtr4rd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
113 |
|
exmidne |
⊢ ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) |
114 |
113
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) ) |
115 |
90 112 114
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
116 |
115
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
117 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
118 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ↔ ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) |
119 |
117 118
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) |
120 |
74 116 119
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
121 |
|
exmidd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∨ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
122 |
13 120 121
|
mpjaodan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |