| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| 2 |
|
hashxp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 4 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 5 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
4 5
|
sselid |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 8 |
4 7
|
sselid |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 9 |
6 8
|
anim12i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
| 10 |
1 9
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
| 11 |
|
rexmul |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| 13 |
3 12
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 15 |
14
|
xpeq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
| 16 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 18 |
17
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
| 19 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = 0 ) |
| 21 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
| 22 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 23 |
21 22
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 25 |
14
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ∅ ) ) |
| 26 |
25 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ 𝐵 ) = 0 ) |
| 27 |
24 26
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( +∞ ·e 0 ) ) |
| 28 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 29 |
|
xmul01 |
⊢ ( +∞ ∈ ℝ* → ( +∞ ·e 0 ) = 0 ) |
| 30 |
28 29
|
ax-mp |
⊢ ( +∞ ·e 0 ) = 0 |
| 31 |
27 30
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = 0 ) |
| 32 |
20 31
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ 𝑊 ) |
| 35 |
|
hashxrcl |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
| 37 |
|
hashgt0 |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
| 38 |
34 37
|
sylancom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
| 39 |
|
xmulpnf2 |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ 0 < ( ♯ ‘ 𝐵 ) ) → ( +∞ ·e ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 40 |
36 38 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( +∞ ·e ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 41 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 42 |
41
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( +∞ ·e ( ♯ ‘ 𝐵 ) ) ) |
| 43 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
| 44 |
43 34
|
xpexd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 45 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ 𝐴 ∈ Fin ) |
| 46 |
|
0fi |
⊢ ∅ ∈ Fin |
| 47 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 48 |
46 47
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 49 |
48
|
necon3bi |
⊢ ( ¬ 𝐴 ∈ Fin → 𝐴 ≠ ∅ ) |
| 50 |
45 49
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 51 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
| 52 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 53 |
|
xpeq0 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
| 54 |
53
|
necon3abii |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
| 55 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
| 56 |
|
df-ne |
⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) |
| 57 |
55 56
|
anbi12i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 58 |
52 54 57
|
3bitr4i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 59 |
58
|
biimpri |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 60 |
50 51 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 61 |
45
|
intnanrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| 62 |
|
pm4.61 |
⊢ ( ¬ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ↔ ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
| 63 |
|
xpfir |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| 64 |
63
|
ex |
⊢ ( ( 𝐴 × 𝐵 ) ∈ Fin → ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
| 65 |
64
|
con3i |
⊢ ( ¬ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
| 66 |
62 65
|
sylbir |
⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
| 67 |
60 61 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
| 68 |
|
hashinf |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ V ∧ ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
| 69 |
44 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
| 70 |
40 42 69
|
3eqtr4rd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 71 |
|
exmidne |
⊢ ( 𝐵 = ∅ ∨ 𝐵 ≠ ∅ ) |
| 72 |
71
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 = ∅ ∨ 𝐵 ≠ ∅ ) ) |
| 73 |
32 70 72
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 74 |
73
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 75 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
| 76 |
75
|
xpeq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
| 77 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
| 78 |
76 77
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 79 |
78
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
| 80 |
79 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = 0 ) |
| 81 |
75
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) |
| 82 |
81 19
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = 0 ) |
| 83 |
|
hashinf |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 84 |
33 83
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 85 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 86 |
82 85
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( 0 ·e +∞ ) ) |
| 87 |
|
xmul02 |
⊢ ( +∞ ∈ ℝ* → ( 0 ·e +∞ ) = 0 ) |
| 88 |
28 87
|
ax-mp |
⊢ ( 0 ·e +∞ ) = 0 |
| 89 |
86 88
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = 0 ) |
| 90 |
80 89
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 91 |
|
hashxrcl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 92 |
91
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 93 |
|
hashgt0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 94 |
93
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 95 |
|
xmulpnf1 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) ·e +∞ ) = +∞ ) |
| 96 |
92 94 95
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e +∞ ) = +∞ ) |
| 97 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 98 |
97
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e +∞ ) ) |
| 99 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
| 100 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝑊 ) |
| 101 |
99 100
|
xpexd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 102 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 103 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ 𝐵 ∈ Fin ) |
| 104 |
|
eleq1 |
⊢ ( 𝐵 = ∅ → ( 𝐵 ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 105 |
46 104
|
mpbiri |
⊢ ( 𝐵 = ∅ → 𝐵 ∈ Fin ) |
| 106 |
105
|
necon3bi |
⊢ ( ¬ 𝐵 ∈ Fin → 𝐵 ≠ ∅ ) |
| 107 |
103 106
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
| 108 |
102 107 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 109 |
103
|
intnand |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| 110 |
108 109 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ Fin ) |
| 111 |
101 110 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = +∞ ) |
| 112 |
96 98 111
|
3eqtr4rd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 113 |
|
exmidne |
⊢ ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) |
| 114 |
113
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) ) |
| 115 |
90 112 114
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 117 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| 118 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ↔ ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) |
| 119 |
117 118
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) |
| 120 |
74 116 119
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |
| 121 |
|
exmidd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∨ ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) ) |
| 122 |
13 120 121
|
mpjaodan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ·e ( ♯ ‘ 𝐵 ) ) ) |