Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
hashxp |
|
3 |
1 2
|
syl |
|
4 |
|
nn0ssre |
|
5 |
|
hashcl |
|
6 |
4 5
|
sselid |
|
7 |
|
hashcl |
|
8 |
4 7
|
sselid |
|
9 |
6 8
|
anim12i |
|
10 |
1 9
|
syl |
|
11 |
|
rexmul |
|
12 |
10 11
|
syl |
|
13 |
3 12
|
eqtr4d |
|
14 |
|
simpr |
|
15 |
14
|
xpeq2d |
|
16 |
|
xp0 |
|
17 |
15 16
|
eqtrdi |
|
18 |
17
|
fveq2d |
|
19 |
|
hash0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
|
simpl |
|
22 |
|
hashinf |
|
23 |
21 22
|
sylan |
|
24 |
23
|
adantr |
|
25 |
14
|
fveq2d |
|
26 |
25 19
|
eqtrdi |
|
27 |
24 26
|
oveq12d |
|
28 |
|
pnfxr |
|
29 |
|
xmul01 |
|
30 |
28 29
|
ax-mp |
|
31 |
27 30
|
eqtrdi |
|
32 |
20 31
|
eqtr4d |
|
33 |
|
simpr |
|
34 |
33
|
ad2antrr |
|
35 |
|
hashxrcl |
|
36 |
34 35
|
syl |
|
37 |
|
hashgt0 |
|
38 |
34 37
|
sylancom |
|
39 |
|
xmulpnf2 |
|
40 |
36 38 39
|
syl2anc |
|
41 |
23
|
adantr |
|
42 |
41
|
oveq1d |
|
43 |
21
|
ad2antrr |
|
44 |
43 34
|
xpexd |
|
45 |
|
simplr |
|
46 |
|
0fin |
|
47 |
|
eleq1 |
|
48 |
46 47
|
mpbiri |
|
49 |
48
|
necon3bi |
|
50 |
45 49
|
syl |
|
51 |
|
simpr |
|
52 |
|
ioran |
|
53 |
|
xpeq0 |
|
54 |
53
|
necon3abii |
|
55 |
|
df-ne |
|
56 |
|
df-ne |
|
57 |
55 56
|
anbi12i |
|
58 |
52 54 57
|
3bitr4i |
|
59 |
58
|
biimpri |
|
60 |
50 51 59
|
syl2anc |
|
61 |
45
|
intnanrd |
|
62 |
|
pm4.61 |
|
63 |
|
xpfir |
|
64 |
63
|
ex |
|
65 |
64
|
con3i |
|
66 |
62 65
|
sylbir |
|
67 |
60 61 66
|
syl2anc |
|
68 |
|
hashinf |
|
69 |
44 67 68
|
syl2anc |
|
70 |
40 42 69
|
3eqtr4rd |
|
71 |
|
exmidne |
|
72 |
71
|
a1i |
|
73 |
32 70 72
|
mpjaodan |
|
74 |
73
|
adantlr |
|
75 |
|
simpr |
|
76 |
75
|
xpeq1d |
|
77 |
|
0xp |
|
78 |
76 77
|
eqtrdi |
|
79 |
78
|
fveq2d |
|
80 |
79 19
|
eqtrdi |
|
81 |
75
|
fveq2d |
|
82 |
81 19
|
eqtrdi |
|
83 |
|
hashinf |
|
84 |
33 83
|
sylan |
|
85 |
84
|
adantr |
|
86 |
82 85
|
oveq12d |
|
87 |
|
xmul02 |
|
88 |
28 87
|
ax-mp |
|
89 |
86 88
|
eqtrdi |
|
90 |
80 89
|
eqtr4d |
|
91 |
|
hashxrcl |
|
92 |
91
|
ad3antrrr |
|
93 |
|
hashgt0 |
|
94 |
93
|
ad4ant14 |
|
95 |
|
xmulpnf1 |
|
96 |
92 94 95
|
syl2anc |
|
97 |
84
|
adantr |
|
98 |
97
|
oveq2d |
|
99 |
21
|
ad2antrr |
|
100 |
33
|
ad2antrr |
|
101 |
99 100
|
xpexd |
|
102 |
|
simpr |
|
103 |
|
simplr |
|
104 |
|
eleq1 |
|
105 |
46 104
|
mpbiri |
|
106 |
105
|
necon3bi |
|
107 |
103 106
|
syl |
|
108 |
102 107 59
|
syl2anc |
|
109 |
103
|
intnand |
|
110 |
108 109 66
|
syl2anc |
|
111 |
101 110 68
|
syl2anc |
|
112 |
96 98 111
|
3eqtr4rd |
|
113 |
|
exmidne |
|
114 |
113
|
a1i |
|
115 |
90 112 114
|
mpjaodan |
|
116 |
115
|
adantlr |
|
117 |
|
simpr |
|
118 |
|
ianor |
|
119 |
117 118
|
sylib |
|
120 |
74 116 119
|
mpjaodan |
|
121 |
|
exmidd |
|
122 |
13 120 121
|
mpjaodan |
|