| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
hashxp |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
nn0ssre |
|
| 5 |
|
hashcl |
|
| 6 |
4 5
|
sselid |
|
| 7 |
|
hashcl |
|
| 8 |
4 7
|
sselid |
|
| 9 |
6 8
|
anim12i |
|
| 10 |
1 9
|
syl |
|
| 11 |
|
rexmul |
|
| 12 |
10 11
|
syl |
|
| 13 |
3 12
|
eqtr4d |
|
| 14 |
|
simpr |
|
| 15 |
14
|
xpeq2d |
|
| 16 |
|
xp0 |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
hash0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
|
simpl |
|
| 22 |
|
hashinf |
|
| 23 |
21 22
|
sylan |
|
| 24 |
23
|
adantr |
|
| 25 |
14
|
fveq2d |
|
| 26 |
25 19
|
eqtrdi |
|
| 27 |
24 26
|
oveq12d |
|
| 28 |
|
pnfxr |
|
| 29 |
|
xmul01 |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
27 30
|
eqtrdi |
|
| 32 |
20 31
|
eqtr4d |
|
| 33 |
|
simpr |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
hashxrcl |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
hashgt0 |
|
| 38 |
34 37
|
sylancom |
|
| 39 |
|
xmulpnf2 |
|
| 40 |
36 38 39
|
syl2anc |
|
| 41 |
23
|
adantr |
|
| 42 |
41
|
oveq1d |
|
| 43 |
21
|
ad2antrr |
|
| 44 |
43 34
|
xpexd |
|
| 45 |
|
simplr |
|
| 46 |
|
0fi |
|
| 47 |
|
eleq1 |
|
| 48 |
46 47
|
mpbiri |
|
| 49 |
48
|
necon3bi |
|
| 50 |
45 49
|
syl |
|
| 51 |
|
simpr |
|
| 52 |
|
ioran |
|
| 53 |
|
xpeq0 |
|
| 54 |
53
|
necon3abii |
|
| 55 |
|
df-ne |
|
| 56 |
|
df-ne |
|
| 57 |
55 56
|
anbi12i |
|
| 58 |
52 54 57
|
3bitr4i |
|
| 59 |
58
|
biimpri |
|
| 60 |
50 51 59
|
syl2anc |
|
| 61 |
45
|
intnanrd |
|
| 62 |
|
pm4.61 |
|
| 63 |
|
xpfir |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
con3i |
|
| 66 |
62 65
|
sylbir |
|
| 67 |
60 61 66
|
syl2anc |
|
| 68 |
|
hashinf |
|
| 69 |
44 67 68
|
syl2anc |
|
| 70 |
40 42 69
|
3eqtr4rd |
|
| 71 |
|
exmidne |
|
| 72 |
71
|
a1i |
|
| 73 |
32 70 72
|
mpjaodan |
|
| 74 |
73
|
adantlr |
|
| 75 |
|
simpr |
|
| 76 |
75
|
xpeq1d |
|
| 77 |
|
0xp |
|
| 78 |
76 77
|
eqtrdi |
|
| 79 |
78
|
fveq2d |
|
| 80 |
79 19
|
eqtrdi |
|
| 81 |
75
|
fveq2d |
|
| 82 |
81 19
|
eqtrdi |
|
| 83 |
|
hashinf |
|
| 84 |
33 83
|
sylan |
|
| 85 |
84
|
adantr |
|
| 86 |
82 85
|
oveq12d |
|
| 87 |
|
xmul02 |
|
| 88 |
28 87
|
ax-mp |
|
| 89 |
86 88
|
eqtrdi |
|
| 90 |
80 89
|
eqtr4d |
|
| 91 |
|
hashxrcl |
|
| 92 |
91
|
ad3antrrr |
|
| 93 |
|
hashgt0 |
|
| 94 |
93
|
ad4ant14 |
|
| 95 |
|
xmulpnf1 |
|
| 96 |
92 94 95
|
syl2anc |
|
| 97 |
84
|
adantr |
|
| 98 |
97
|
oveq2d |
|
| 99 |
21
|
ad2antrr |
|
| 100 |
33
|
ad2antrr |
|
| 101 |
99 100
|
xpexd |
|
| 102 |
|
simpr |
|
| 103 |
|
simplr |
|
| 104 |
|
eleq1 |
|
| 105 |
46 104
|
mpbiri |
|
| 106 |
105
|
necon3bi |
|
| 107 |
103 106
|
syl |
|
| 108 |
102 107 59
|
syl2anc |
|
| 109 |
103
|
intnand |
|
| 110 |
108 109 66
|
syl2anc |
|
| 111 |
101 110 68
|
syl2anc |
|
| 112 |
96 98 111
|
3eqtr4rd |
|
| 113 |
|
exmidne |
|
| 114 |
113
|
a1i |
|
| 115 |
90 112 114
|
mpjaodan |
|
| 116 |
115
|
adantlr |
|
| 117 |
|
simpr |
|
| 118 |
|
ianor |
|
| 119 |
117 118
|
sylib |
|
| 120 |
74 116 119
|
mpjaodan |
|
| 121 |
|
exmidd |
|
| 122 |
13 120 121
|
mpjaodan |
|