Metamath Proof Explorer


Theorem hashgt0

Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017)

Ref Expression
Assertion hashgt0 AVA0<A

Proof

Step Hyp Ref Expression
1 hashge0 AV0A
2 1 adantr AVA0A
3 hasheq0 AVA=0A=
4 3 necon3bid AVA0A
5 4 biimpar AVAA0
6 2 5 jca AVA0AA0
7 0xr 0*
8 hashxrcl AVA*
9 xrltlen 0*A*0<A0AA0
10 7 8 9 sylancr AV0<A0AA0
11 10 biimpar AV0AA00<A
12 6 11 syldan AVA0<A