Metamath Proof Explorer


Theorem xrltlen

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion xrltlen A*B*A<BABBA

Proof

Step Hyp Ref Expression
1 xrlttri A*B*A<B¬A=BB<A
2 ioran ¬A=BB<A¬A=B¬B<A
3 2 biancomi ¬A=BB<A¬B<A¬A=B
4 1 3 bitrdi A*B*A<B¬B<A¬A=B
5 xrlenlt A*B*AB¬B<A
6 nesym BA¬A=B
7 6 a1i A*B*BA¬A=B
8 5 7 anbi12d A*B*ABBA¬B<A¬A=B
9 4 8 bitr4d A*B*A<BABBA