Metamath Proof Explorer


Theorem dfle2

Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion dfle2 =<I*

Proof

Step Hyp Ref Expression
1 lerel Rel
2 ltrelxr <*×*
3 idssxp I**×*
4 2 3 unssi <I**×*
5 relxp Rel*×*
6 relss <I**×*Rel*×*Rel<I*
7 4 5 6 mp2 Rel<I*
8 lerelxr *×*
9 8 brel xyx*y*
10 4 brel x<I*yx*y*
11 xrleloe x*y*xyx<yx=y
12 resieq x*y*xI*yx=y
13 12 orbi2d x*y*x<yxI*yx<yx=y
14 11 13 bitr4d x*y*xyx<yxI*y
15 brun x<I*yx<yxI*y
16 14 15 bitr4di x*y*xyx<I*y
17 9 10 16 pm5.21nii xyx<I*y
18 1 7 17 eqbrriv =<I*