Metamath Proof Explorer


Theorem dflt2

Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion dflt2 <=I

Proof

Step Hyp Ref Expression
1 ltrel Rel<
2 difss I
3 lerel Rel
4 relss IRelRelI
5 2 3 4 mp2 RelI
6 ltrelxr <*×*
7 6 brel x<yx*y*
8 lerelxr *×*
9 2 8 sstri I*×*
10 9 brel xIyx*y*
11 xrltlen x*y*x<yxyyx
12 equcom y=xx=y
13 vex yV
14 13 ideq xIyx=y
15 12 14 bitr4i y=xxIy
16 15 necon3abii yx¬xIy
17 16 anbi2i xyyxxy¬xIy
18 11 17 bitrdi x*y*x<yxy¬xIy
19 brdif xIyxy¬xIy
20 18 19 bitr4di x*y*x<yxIy
21 7 10 20 pm5.21nii x<yxIy
22 1 5 21 eqbrriv <=I