Metamath Proof Explorer


Theorem hashge1

Description: The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion hashge1 AVA1A

Proof

Step Hyp Ref Expression
1 simpr AVAAFinAFin
2 simplr AVAAFinA
3 hashnncl AFinAA
4 3 biimpar AFinAA
5 1 2 4 syl2anc AVAAFinA
6 5 nnge1d AVAAFin1A
7 1xr 1*
8 pnfge 1*1+∞
9 7 8 ax-mp 1+∞
10 hashinf AV¬AFinA=+∞
11 10 adantlr AVA¬AFinA=+∞
12 9 11 breqtrrid AVA¬AFin1A
13 6 12 pm2.61dan AVA1A