| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashge0 |
⊢ ( 𝐴 ∈ 𝑉 → 0 ≤ ( ♯ ‘ 𝐴 ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 ≤ ( ♯ ‘ 𝐴 ) ) |
| 3 |
|
hasheq0 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 4 |
3
|
necon3bid |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 5 |
4
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 6 |
2 5
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
|
hashxrcl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 9 |
|
xrltlen |
⊢ ( ( 0 ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 10 |
7 8 9
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 11 |
10
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 12 |
6 11
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |