| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashge0 |
|- ( A e. V -> 0 <_ ( # ` A ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. V /\ A =/= (/) ) -> 0 <_ ( # ` A ) ) |
| 3 |
|
hasheq0 |
|- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 4 |
3
|
necon3bid |
|- ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 5 |
4
|
biimpar |
|- ( ( A e. V /\ A =/= (/) ) -> ( # ` A ) =/= 0 ) |
| 6 |
2 5
|
jca |
|- ( ( A e. V /\ A =/= (/) ) -> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) |
| 7 |
|
0xr |
|- 0 e. RR* |
| 8 |
|
hashxrcl |
|- ( A e. V -> ( # ` A ) e. RR* ) |
| 9 |
|
xrltlen |
|- ( ( 0 e. RR* /\ ( # ` A ) e. RR* ) -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
| 10 |
7 8 9
|
sylancr |
|- ( A e. V -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
| 11 |
10
|
biimpar |
|- ( ( A e. V /\ ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) -> 0 < ( # ` A ) ) |
| 12 |
6 11
|
syldan |
|- ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |