Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( A e. V /\ B e. W ) /\ ( A e. Fin /\ B e. Fin ) ) -> ( A e. Fin /\ B e. Fin ) ) |
2 |
|
hashxp |
|- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
3 |
1 2
|
syl |
|- ( ( ( A e. V /\ B e. W ) /\ ( A e. Fin /\ B e. Fin ) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
4 |
|
nn0ssre |
|- NN0 C_ RR |
5 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
6 |
4 5
|
sselid |
|- ( A e. Fin -> ( # ` A ) e. RR ) |
7 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
8 |
4 7
|
sselid |
|- ( B e. Fin -> ( # ` B ) e. RR ) |
9 |
6 8
|
anim12i |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) ) |
10 |
1 9
|
syl |
|- ( ( ( A e. V /\ B e. W ) /\ ( A e. Fin /\ B e. Fin ) ) -> ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) ) |
11 |
|
rexmul |
|- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) *e ( # ` B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
12 |
10 11
|
syl |
|- ( ( ( A e. V /\ B e. W ) /\ ( A e. Fin /\ B e. Fin ) ) -> ( ( # ` A ) *e ( # ` B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
13 |
3 12
|
eqtr4d |
|- ( ( ( A e. V /\ B e. W ) /\ ( A e. Fin /\ B e. Fin ) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
14 |
|
simpr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> B = (/) ) |
15 |
14
|
xpeq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( A X. B ) = ( A X. (/) ) ) |
16 |
|
xp0 |
|- ( A X. (/) ) = (/) |
17 |
15 16
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( A X. B ) = (/) ) |
18 |
17
|
fveq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` ( A X. B ) ) = ( # ` (/) ) ) |
19 |
|
hash0 |
|- ( # ` (/) ) = 0 |
20 |
18 19
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` ( A X. B ) ) = 0 ) |
21 |
|
simpl |
|- ( ( A e. V /\ B e. W ) -> A e. V ) |
22 |
|
hashinf |
|- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
23 |
21 22
|
sylan |
|- ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
24 |
23
|
adantr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` A ) = +oo ) |
25 |
14
|
fveq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` B ) = ( # ` (/) ) ) |
26 |
25 19
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` B ) = 0 ) |
27 |
24 26
|
oveq12d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = ( +oo *e 0 ) ) |
28 |
|
pnfxr |
|- +oo e. RR* |
29 |
|
xmul01 |
|- ( +oo e. RR* -> ( +oo *e 0 ) = 0 ) |
30 |
28 29
|
ax-mp |
|- ( +oo *e 0 ) = 0 |
31 |
27 30
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = 0 ) |
32 |
20 31
|
eqtr4d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B = (/) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
33 |
|
simpr |
|- ( ( A e. V /\ B e. W ) -> B e. W ) |
34 |
33
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> B e. W ) |
35 |
|
hashxrcl |
|- ( B e. W -> ( # ` B ) e. RR* ) |
36 |
34 35
|
syl |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( # ` B ) e. RR* ) |
37 |
|
hashgt0 |
|- ( ( B e. W /\ B =/= (/) ) -> 0 < ( # ` B ) ) |
38 |
34 37
|
sylancom |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> 0 < ( # ` B ) ) |
39 |
|
xmulpnf2 |
|- ( ( ( # ` B ) e. RR* /\ 0 < ( # ` B ) ) -> ( +oo *e ( # ` B ) ) = +oo ) |
40 |
36 38 39
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( +oo *e ( # ` B ) ) = +oo ) |
41 |
23
|
adantr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( # ` A ) = +oo ) |
42 |
41
|
oveq1d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = ( +oo *e ( # ` B ) ) ) |
43 |
21
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> A e. V ) |
44 |
43 34
|
xpexd |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( A X. B ) e. _V ) |
45 |
|
simplr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> -. A e. Fin ) |
46 |
|
0fin |
|- (/) e. Fin |
47 |
|
eleq1 |
|- ( A = (/) -> ( A e. Fin <-> (/) e. Fin ) ) |
48 |
46 47
|
mpbiri |
|- ( A = (/) -> A e. Fin ) |
49 |
48
|
necon3bi |
|- ( -. A e. Fin -> A =/= (/) ) |
50 |
45 49
|
syl |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> A =/= (/) ) |
51 |
|
simpr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> B =/= (/) ) |
52 |
|
ioran |
|- ( -. ( A = (/) \/ B = (/) ) <-> ( -. A = (/) /\ -. B = (/) ) ) |
53 |
|
xpeq0 |
|- ( ( A X. B ) = (/) <-> ( A = (/) \/ B = (/) ) ) |
54 |
53
|
necon3abii |
|- ( ( A X. B ) =/= (/) <-> -. ( A = (/) \/ B = (/) ) ) |
55 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
56 |
|
df-ne |
|- ( B =/= (/) <-> -. B = (/) ) |
57 |
55 56
|
anbi12i |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( -. A = (/) /\ -. B = (/) ) ) |
58 |
52 54 57
|
3bitr4i |
|- ( ( A X. B ) =/= (/) <-> ( A =/= (/) /\ B =/= (/) ) ) |
59 |
58
|
biimpri |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( A X. B ) =/= (/) ) |
60 |
50 51 59
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( A X. B ) =/= (/) ) |
61 |
45
|
intnanrd |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> -. ( A e. Fin /\ B e. Fin ) ) |
62 |
|
pm4.61 |
|- ( -. ( ( A X. B ) =/= (/) -> ( A e. Fin /\ B e. Fin ) ) <-> ( ( A X. B ) =/= (/) /\ -. ( A e. Fin /\ B e. Fin ) ) ) |
63 |
|
xpfir |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) ) |
64 |
63
|
ex |
|- ( ( A X. B ) e. Fin -> ( ( A X. B ) =/= (/) -> ( A e. Fin /\ B e. Fin ) ) ) |
65 |
64
|
con3i |
|- ( -. ( ( A X. B ) =/= (/) -> ( A e. Fin /\ B e. Fin ) ) -> -. ( A X. B ) e. Fin ) |
66 |
62 65
|
sylbir |
|- ( ( ( A X. B ) =/= (/) /\ -. ( A e. Fin /\ B e. Fin ) ) -> -. ( A X. B ) e. Fin ) |
67 |
60 61 66
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> -. ( A X. B ) e. Fin ) |
68 |
|
hashinf |
|- ( ( ( A X. B ) e. _V /\ -. ( A X. B ) e. Fin ) -> ( # ` ( A X. B ) ) = +oo ) |
69 |
44 67 68
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( # ` ( A X. B ) ) = +oo ) |
70 |
40 42 69
|
3eqtr4rd |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) /\ B =/= (/) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
71 |
|
exmidne |
|- ( B = (/) \/ B =/= (/) ) |
72 |
71
|
a1i |
|- ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) -> ( B = (/) \/ B =/= (/) ) ) |
73 |
32 70 72
|
mpjaodan |
|- ( ( ( A e. V /\ B e. W ) /\ -. A e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
74 |
73
|
adantlr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. ( A e. Fin /\ B e. Fin ) ) /\ -. A e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
75 |
|
simpr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> A = (/) ) |
76 |
75
|
xpeq1d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( A X. B ) = ( (/) X. B ) ) |
77 |
|
0xp |
|- ( (/) X. B ) = (/) |
78 |
76 77
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( A X. B ) = (/) ) |
79 |
78
|
fveq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` ( A X. B ) ) = ( # ` (/) ) ) |
80 |
79 19
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` ( A X. B ) ) = 0 ) |
81 |
75
|
fveq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` A ) = ( # ` (/) ) ) |
82 |
81 19
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` A ) = 0 ) |
83 |
|
hashinf |
|- ( ( B e. W /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
84 |
33 83
|
sylan |
|- ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
85 |
84
|
adantr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` B ) = +oo ) |
86 |
82 85
|
oveq12d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = ( 0 *e +oo ) ) |
87 |
|
xmul02 |
|- ( +oo e. RR* -> ( 0 *e +oo ) = 0 ) |
88 |
28 87
|
ax-mp |
|- ( 0 *e +oo ) = 0 |
89 |
86 88
|
eqtrdi |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = 0 ) |
90 |
80 89
|
eqtr4d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A = (/) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
91 |
|
hashxrcl |
|- ( A e. V -> ( # ` A ) e. RR* ) |
92 |
91
|
ad3antrrr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( # ` A ) e. RR* ) |
93 |
|
hashgt0 |
|- ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |
94 |
93
|
ad4ant14 |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> 0 < ( # ` A ) ) |
95 |
|
xmulpnf1 |
|- ( ( ( # ` A ) e. RR* /\ 0 < ( # ` A ) ) -> ( ( # ` A ) *e +oo ) = +oo ) |
96 |
92 94 95
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( ( # ` A ) *e +oo ) = +oo ) |
97 |
84
|
adantr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( # ` B ) = +oo ) |
98 |
97
|
oveq2d |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( ( # ` A ) *e ( # ` B ) ) = ( ( # ` A ) *e +oo ) ) |
99 |
21
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> A e. V ) |
100 |
33
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> B e. W ) |
101 |
99 100
|
xpexd |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( A X. B ) e. _V ) |
102 |
|
simpr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> A =/= (/) ) |
103 |
|
simplr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> -. B e. Fin ) |
104 |
|
eleq1 |
|- ( B = (/) -> ( B e. Fin <-> (/) e. Fin ) ) |
105 |
46 104
|
mpbiri |
|- ( B = (/) -> B e. Fin ) |
106 |
105
|
necon3bi |
|- ( -. B e. Fin -> B =/= (/) ) |
107 |
103 106
|
syl |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> B =/= (/) ) |
108 |
102 107 59
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( A X. B ) =/= (/) ) |
109 |
103
|
intnand |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> -. ( A e. Fin /\ B e. Fin ) ) |
110 |
108 109 66
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> -. ( A X. B ) e. Fin ) |
111 |
101 110 68
|
syl2anc |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( # ` ( A X. B ) ) = +oo ) |
112 |
96 98 111
|
3eqtr4rd |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) /\ A =/= (/) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
113 |
|
exmidne |
|- ( A = (/) \/ A =/= (/) ) |
114 |
113
|
a1i |
|- ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) -> ( A = (/) \/ A =/= (/) ) ) |
115 |
90 112 114
|
mpjaodan |
|- ( ( ( A e. V /\ B e. W ) /\ -. B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
116 |
115
|
adantlr |
|- ( ( ( ( A e. V /\ B e. W ) /\ -. ( A e. Fin /\ B e. Fin ) ) /\ -. B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
117 |
|
simpr |
|- ( ( ( A e. V /\ B e. W ) /\ -. ( A e. Fin /\ B e. Fin ) ) -> -. ( A e. Fin /\ B e. Fin ) ) |
118 |
|
ianor |
|- ( -. ( A e. Fin /\ B e. Fin ) <-> ( -. A e. Fin \/ -. B e. Fin ) ) |
119 |
117 118
|
sylib |
|- ( ( ( A e. V /\ B e. W ) /\ -. ( A e. Fin /\ B e. Fin ) ) -> ( -. A e. Fin \/ -. B e. Fin ) ) |
120 |
74 116 119
|
mpjaodan |
|- ( ( ( A e. V /\ B e. W ) /\ -. ( A e. Fin /\ B e. Fin ) ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |
121 |
|
exmidd |
|- ( ( A e. V /\ B e. W ) -> ( ( A e. Fin /\ B e. Fin ) \/ -. ( A e. Fin /\ B e. Fin ) ) ) |
122 |
13 120 121
|
mpjaodan |
|- ( ( A e. V /\ B e. W ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) *e ( # ` B ) ) ) |