| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpexr2 |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) |
| 2 |
1
|
simpld |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. _V ) |
| 3 |
1
|
simprd |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. _V ) |
| 4 |
|
simpr |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A X. B ) =/= (/) ) |
| 5 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 6 |
4 5
|
sylibr |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A =/= (/) /\ B =/= (/) ) ) |
| 7 |
6
|
simprd |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B =/= (/) ) |
| 8 |
|
xpdom3 |
|- ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |
| 9 |
2 3 7 8
|
syl3anc |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A ~<_ ( A X. B ) ) |
| 10 |
|
domfi |
|- ( ( ( A X. B ) e. Fin /\ A ~<_ ( A X. B ) ) -> A e. Fin ) |
| 11 |
9 10
|
syldan |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. Fin ) |
| 12 |
6
|
simpld |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A =/= (/) ) |
| 13 |
|
xpdom3 |
|- ( ( B e. _V /\ A e. _V /\ A =/= (/) ) -> B ~<_ ( B X. A ) ) |
| 14 |
3 2 12 13
|
syl3anc |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( B X. A ) ) |
| 15 |
|
xpcomeng |
|- ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) ) |
| 16 |
3 2 15
|
syl2anc |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) ) |
| 17 |
|
domentr |
|- ( ( B ~<_ ( B X. A ) /\ ( B X. A ) ~~ ( A X. B ) ) -> B ~<_ ( A X. B ) ) |
| 18 |
14 16 17
|
syl2anc |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( A X. B ) ) |
| 19 |
|
domfi |
|- ( ( ( A X. B ) e. Fin /\ B ~<_ ( A X. B ) ) -> B e. Fin ) |
| 20 |
18 19
|
syldan |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. Fin ) |
| 21 |
11 20
|
jca |
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) ) |