Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq1 |
|- ( x = A -> ( x X. y ) = ( A X. y ) ) |
2 |
|
xpeq2 |
|- ( x = A -> ( y X. x ) = ( y X. A ) ) |
3 |
1 2
|
breq12d |
|- ( x = A -> ( ( x X. y ) ~~ ( y X. x ) <-> ( A X. y ) ~~ ( y X. A ) ) ) |
4 |
|
xpeq2 |
|- ( y = B -> ( A X. y ) = ( A X. B ) ) |
5 |
|
xpeq1 |
|- ( y = B -> ( y X. A ) = ( B X. A ) ) |
6 |
4 5
|
breq12d |
|- ( y = B -> ( ( A X. y ) ~~ ( y X. A ) <-> ( A X. B ) ~~ ( B X. A ) ) ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
xpcomen |
|- ( x X. y ) ~~ ( y X. x ) |
10 |
3 6 9
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) ) |