| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 2 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
| 3 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝐴 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ( 𝐴 ∈ V ∧ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ) ) ) |
| 4 |
1 2 3
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ( 𝐴 ∈ V ∧ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ) ) |
| 5 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 6 |
5
|
biantrurd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ↔ ( 𝐴 ∈ V ∧ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ) ) ) |
| 7 |
4 6
|
bitr4id |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ) ) |
| 8 |
7
|
notbid |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ¬ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ) ) |
| 9 |
|
hashxnn0 |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0* ) |
| 10 |
|
xnn01gt |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0* → ( ¬ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ↔ 1 < ( ♯ ‘ 𝐴 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ ( ♯ ‘ 𝐴 ) ∈ { 0 , 1 } ↔ 1 < ( ♯ ‘ 𝐴 ) ) ) |
| 12 |
8 11
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝐴 ) ) ) |