Metamath Proof Explorer


Theorem rtelextdg2

Description: If an element X is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses rtelextdg2.1 K = E 𝑠 F
rtelextdg2.2 L = E 𝑠 E fldGen F X
rtelextdg2.3 0 ˙ = 0 E
rtelextdg2.4 P = Poly 1 K
rtelextdg2.5 V = Base E
rtelextdg2.6 · ˙ = E
rtelextdg2.7 + ˙ = + E
rtelextdg2.8 × ˙ = mulGrp E
rtelextdg2.9 φ E Field
rtelextdg2.10 φ F SubDRing E
rtelextdg2.11 φ X V
rtelextdg2.12 φ A F
rtelextdg2.13 φ B F
rtelextdg2.14 φ 2 × ˙ X + ˙ A · ˙ X + ˙ B = 0 ˙
Assertion rtelextdg2 φ X F L .:. K = 2

Proof

Step Hyp Ref Expression
1 rtelextdg2.1 K = E 𝑠 F
2 rtelextdg2.2 L = E 𝑠 E fldGen F X
3 rtelextdg2.3 0 ˙ = 0 E
4 rtelextdg2.4 P = Poly 1 K
5 rtelextdg2.5 V = Base E
6 rtelextdg2.6 · ˙ = E
7 rtelextdg2.7 + ˙ = + E
8 rtelextdg2.8 × ˙ = mulGrp E
9 rtelextdg2.9 φ E Field
10 rtelextdg2.10 φ F SubDRing E
11 rtelextdg2.11 φ X V
12 rtelextdg2.12 φ A F
13 rtelextdg2.13 φ B F
14 rtelextdg2.14 φ 2 × ˙ X + ˙ A · ˙ X + ˙ B = 0 ˙
15 9 flddrngd φ E DivRing
16 5 sdrgss F SubDRing E F V
17 10 16 syl φ F V
18 11 snssd φ X V
19 17 18 unssd φ F X V
20 5 15 19 fldgenssid φ F X E fldGen F X
21 ssun2 X F X
22 snidg X V X X
23 11 22 syl φ X X
24 21 23 sselid φ X F X
25 20 24 sseldd φ X E fldGen F X
26 25 adantr φ L .:. K = 1 X E fldGen F X
27 5 1 2 9 10 18 fldgenfldext φ L /FldExt K
28 extdg1id L /FldExt K L .:. K = 1 L = K
29 27 28 sylan φ L .:. K = 1 L = K
30 29 fveq2d φ L .:. K = 1 Base L = Base K
31 5 15 19 fldgenssv φ E fldGen F X V
32 2 5 ressbas2 E fldGen F X V E fldGen F X = Base L
33 31 32 syl φ E fldGen F X = Base L
34 33 adantr φ L .:. K = 1 E fldGen F X = Base L
35 1 5 ressbas2 F V F = Base K
36 17 35 syl φ F = Base K
37 36 adantr φ L .:. K = 1 F = Base K
38 30 34 37 3eqtr4d φ L .:. K = 1 E fldGen F X = F
39 26 38 eleqtrd φ L .:. K = 1 X F
40 simpr φ L .:. K = 2 L .:. K = 2
41 1zzd φ 1
42 2z 2
43 42 a1i φ 2
44 extdgcl L /FldExt K L .:. K 0 *
45 27 44 syl φ L .:. K 0 *
46 2nn0 2 0
47 46 a1i φ 2 0
48 eqid var 1 K = var 1 K
49 eqid + P = + P
50 eqid P = P
51 eqid mulGrp P = mulGrp P
52 eqid algSc P = algSc P
53 eqid 2 mulGrp P var 1 K + P algSc P A P var 1 K + P algSc P B = 2 mulGrp P var 1 K + P algSc P A P var 1 K + P algSc P B
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53 rtelextdg2lem φ L .:. K 2
55 xnn0lenn0nn0 L .:. K 0 * 2 0 L .:. K 2 L .:. K 0
56 45 47 54 55 syl3anc φ L .:. K 0
57 56 nn0zd φ L .:. K
58 extdggt0 L /FldExt K 0 < L .:. K
59 27 58 syl φ 0 < L .:. K
60 zgt0ge1 L .:. K 0 < L .:. K 1 L .:. K
61 60 biimpa L .:. K 0 < L .:. K 1 L .:. K
62 57 59 61 syl2anc φ 1 L .:. K
63 41 43 57 62 54 elfzd φ L .:. K 1 2
64 fz12pr 1 2 = 1 2
65 63 64 eleqtrdi φ L .:. K 1 2
66 elpri L .:. K 1 2 L .:. K = 1 L .:. K = 2
67 65 66 syl φ L .:. K = 1 L .:. K = 2
68 39 40 67 orim12da φ X F L .:. K = 2