Step |
Hyp |
Ref |
Expression |
1 |
|
rtelextdg2.1 |
|
2 |
|
rtelextdg2.2 |
|
3 |
|
rtelextdg2.3 |
|
4 |
|
rtelextdg2.4 |
|
5 |
|
rtelextdg2.5 |
|
6 |
|
rtelextdg2.6 |
|
7 |
|
rtelextdg2.7 |
|
8 |
|
rtelextdg2.8 |
|
9 |
|
rtelextdg2.9 |
|
10 |
|
rtelextdg2.10 |
|
11 |
|
rtelextdg2.11 |
|
12 |
|
rtelextdg2.12 |
|
13 |
|
rtelextdg2.13 |
|
14 |
|
rtelextdg2.14 |
|
15 |
9
|
flddrngd |
|
16 |
5
|
sdrgss |
|
17 |
10 16
|
syl |
|
18 |
11
|
snssd |
|
19 |
17 18
|
unssd |
|
20 |
5 15 19
|
fldgenssid |
|
21 |
|
ssun2 |
|
22 |
|
snidg |
|
23 |
11 22
|
syl |
|
24 |
21 23
|
sselid |
|
25 |
20 24
|
sseldd |
|
26 |
25
|
adantr |
|
27 |
5 1 2 9 10 18
|
fldgenfldext |
|
28 |
|
extdg1id |
|
29 |
27 28
|
sylan |
|
30 |
29
|
fveq2d |
|
31 |
5 15 19
|
fldgenssv |
|
32 |
2 5
|
ressbas2 |
|
33 |
31 32
|
syl |
|
34 |
33
|
adantr |
|
35 |
1 5
|
ressbas2 |
|
36 |
17 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
30 34 37
|
3eqtr4d |
|
39 |
26 38
|
eleqtrd |
|
40 |
|
simpr |
|
41 |
|
1zzd |
|
42 |
|
2z |
|
43 |
42
|
a1i |
|
44 |
|
extdgcl |
|
45 |
27 44
|
syl |
|
46 |
|
2nn0 |
|
47 |
46
|
a1i |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53
|
rtelextdg2lem |
|
55 |
|
xnn0lenn0nn0 |
|
56 |
45 47 54 55
|
syl3anc |
|
57 |
56
|
nn0zd |
|
58 |
|
extdggt0 |
|
59 |
27 58
|
syl |
|
60 |
|
zgt0ge1 |
|
61 |
60
|
biimpa |
|
62 |
57 59 61
|
syl2anc |
|
63 |
41 43 57 62 54
|
elfzd |
|
64 |
|
fz12pr |
|
65 |
63 64
|
eleqtrdi |
|
66 |
|
elpri |
|
67 |
65 66
|
syl |
|
68 |
39 40 67
|
orim12da |
|