Step |
Hyp |
Ref |
Expression |
1 |
|
rtelextdg2.1 |
|- K = ( E |`s F ) |
2 |
|
rtelextdg2.2 |
|- L = ( E |`s ( E fldGen ( F u. { X } ) ) ) |
3 |
|
rtelextdg2.3 |
|- .0. = ( 0g ` E ) |
4 |
|
rtelextdg2.4 |
|- P = ( Poly1 ` K ) |
5 |
|
rtelextdg2.5 |
|- V = ( Base ` E ) |
6 |
|
rtelextdg2.6 |
|- .x. = ( .r ` E ) |
7 |
|
rtelextdg2.7 |
|- .+ = ( +g ` E ) |
8 |
|
rtelextdg2.8 |
|- .^ = ( .g ` ( mulGrp ` E ) ) |
9 |
|
rtelextdg2.9 |
|- ( ph -> E e. Field ) |
10 |
|
rtelextdg2.10 |
|- ( ph -> F e. ( SubDRing ` E ) ) |
11 |
|
rtelextdg2.11 |
|- ( ph -> X e. V ) |
12 |
|
rtelextdg2.12 |
|- ( ph -> A e. F ) |
13 |
|
rtelextdg2.13 |
|- ( ph -> B e. F ) |
14 |
|
rtelextdg2.14 |
|- ( ph -> ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) = .0. ) |
15 |
9
|
flddrngd |
|- ( ph -> E e. DivRing ) |
16 |
5
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ V ) |
17 |
10 16
|
syl |
|- ( ph -> F C_ V ) |
18 |
11
|
snssd |
|- ( ph -> { X } C_ V ) |
19 |
17 18
|
unssd |
|- ( ph -> ( F u. { X } ) C_ V ) |
20 |
5 15 19
|
fldgenssid |
|- ( ph -> ( F u. { X } ) C_ ( E fldGen ( F u. { X } ) ) ) |
21 |
|
ssun2 |
|- { X } C_ ( F u. { X } ) |
22 |
|
snidg |
|- ( X e. V -> X e. { X } ) |
23 |
11 22
|
syl |
|- ( ph -> X e. { X } ) |
24 |
21 23
|
sselid |
|- ( ph -> X e. ( F u. { X } ) ) |
25 |
20 24
|
sseldd |
|- ( ph -> X e. ( E fldGen ( F u. { X } ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> X e. ( E fldGen ( F u. { X } ) ) ) |
27 |
5 1 2 9 10 18
|
fldgenfldext |
|- ( ph -> L /FldExt K ) |
28 |
|
extdg1id |
|- ( ( L /FldExt K /\ ( L [:] K ) = 1 ) -> L = K ) |
29 |
27 28
|
sylan |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> L = K ) |
30 |
29
|
fveq2d |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> ( Base ` L ) = ( Base ` K ) ) |
31 |
5 15 19
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { X } ) ) C_ V ) |
32 |
2 5
|
ressbas2 |
|- ( ( E fldGen ( F u. { X } ) ) C_ V -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) |
33 |
31 32
|
syl |
|- ( ph -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) |
35 |
1 5
|
ressbas2 |
|- ( F C_ V -> F = ( Base ` K ) ) |
36 |
17 35
|
syl |
|- ( ph -> F = ( Base ` K ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> F = ( Base ` K ) ) |
38 |
30 34 37
|
3eqtr4d |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> ( E fldGen ( F u. { X } ) ) = F ) |
39 |
26 38
|
eleqtrd |
|- ( ( ph /\ ( L [:] K ) = 1 ) -> X e. F ) |
40 |
|
simpr |
|- ( ( ph /\ ( L [:] K ) = 2 ) -> ( L [:] K ) = 2 ) |
41 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
42 |
|
2z |
|- 2 e. ZZ |
43 |
42
|
a1i |
|- ( ph -> 2 e. ZZ ) |
44 |
|
extdgcl |
|- ( L /FldExt K -> ( L [:] K ) e. NN0* ) |
45 |
27 44
|
syl |
|- ( ph -> ( L [:] K ) e. NN0* ) |
46 |
|
2nn0 |
|- 2 e. NN0 |
47 |
46
|
a1i |
|- ( ph -> 2 e. NN0 ) |
48 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
49 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
50 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
51 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
52 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
53 |
|
eqid |
|- ( ( 2 ( .g ` ( mulGrp ` P ) ) ( var1 ` K ) ) ( +g ` P ) ( ( ( ( algSc ` P ) ` A ) ( .r ` P ) ( var1 ` K ) ) ( +g ` P ) ( ( algSc ` P ) ` B ) ) ) = ( ( 2 ( .g ` ( mulGrp ` P ) ) ( var1 ` K ) ) ( +g ` P ) ( ( ( ( algSc ` P ) ` A ) ( .r ` P ) ( var1 ` K ) ) ( +g ` P ) ( ( algSc ` P ) ` B ) ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53
|
rtelextdg2lem |
|- ( ph -> ( L [:] K ) <_ 2 ) |
55 |
|
xnn0lenn0nn0 |
|- ( ( ( L [:] K ) e. NN0* /\ 2 e. NN0 /\ ( L [:] K ) <_ 2 ) -> ( L [:] K ) e. NN0 ) |
56 |
45 47 54 55
|
syl3anc |
|- ( ph -> ( L [:] K ) e. NN0 ) |
57 |
56
|
nn0zd |
|- ( ph -> ( L [:] K ) e. ZZ ) |
58 |
|
extdggt0 |
|- ( L /FldExt K -> 0 < ( L [:] K ) ) |
59 |
27 58
|
syl |
|- ( ph -> 0 < ( L [:] K ) ) |
60 |
|
zgt0ge1 |
|- ( ( L [:] K ) e. ZZ -> ( 0 < ( L [:] K ) <-> 1 <_ ( L [:] K ) ) ) |
61 |
60
|
biimpa |
|- ( ( ( L [:] K ) e. ZZ /\ 0 < ( L [:] K ) ) -> 1 <_ ( L [:] K ) ) |
62 |
57 59 61
|
syl2anc |
|- ( ph -> 1 <_ ( L [:] K ) ) |
63 |
41 43 57 62 54
|
elfzd |
|- ( ph -> ( L [:] K ) e. ( 1 ... 2 ) ) |
64 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
65 |
63 64
|
eleqtrdi |
|- ( ph -> ( L [:] K ) e. { 1 , 2 } ) |
66 |
|
elpri |
|- ( ( L [:] K ) e. { 1 , 2 } -> ( ( L [:] K ) = 1 \/ ( L [:] K ) = 2 ) ) |
67 |
65 66
|
syl |
|- ( ph -> ( ( L [:] K ) = 1 \/ ( L [:] K ) = 2 ) ) |
68 |
39 40 67
|
orim12da |
|- ( ph -> ( X e. F \/ ( L [:] K ) = 2 ) ) |