| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtelextdg2.1 |  |-  K = ( E |`s F ) | 
						
							| 2 |  | rtelextdg2.2 |  |-  L = ( E |`s ( E fldGen ( F u. { X } ) ) ) | 
						
							| 3 |  | rtelextdg2.3 |  |-  .0. = ( 0g ` E ) | 
						
							| 4 |  | rtelextdg2.4 |  |-  P = ( Poly1 ` K ) | 
						
							| 5 |  | rtelextdg2.5 |  |-  V = ( Base ` E ) | 
						
							| 6 |  | rtelextdg2.6 |  |-  .x. = ( .r ` E ) | 
						
							| 7 |  | rtelextdg2.7 |  |-  .+ = ( +g ` E ) | 
						
							| 8 |  | rtelextdg2.8 |  |-  .^ = ( .g ` ( mulGrp ` E ) ) | 
						
							| 9 |  | rtelextdg2.9 |  |-  ( ph -> E e. Field ) | 
						
							| 10 |  | rtelextdg2.10 |  |-  ( ph -> F e. ( SubDRing ` E ) ) | 
						
							| 11 |  | rtelextdg2.11 |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | rtelextdg2.12 |  |-  ( ph -> A e. F ) | 
						
							| 13 |  | rtelextdg2.13 |  |-  ( ph -> B e. F ) | 
						
							| 14 |  | rtelextdg2.14 |  |-  ( ph -> ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) = .0. ) | 
						
							| 15 | 9 | flddrngd |  |-  ( ph -> E e. DivRing ) | 
						
							| 16 | 5 | sdrgss |  |-  ( F e. ( SubDRing ` E ) -> F C_ V ) | 
						
							| 17 | 10 16 | syl |  |-  ( ph -> F C_ V ) | 
						
							| 18 | 11 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 19 | 17 18 | unssd |  |-  ( ph -> ( F u. { X } ) C_ V ) | 
						
							| 20 | 5 15 19 | fldgenssid |  |-  ( ph -> ( F u. { X } ) C_ ( E fldGen ( F u. { X } ) ) ) | 
						
							| 21 |  | ssun2 |  |-  { X } C_ ( F u. { X } ) | 
						
							| 22 |  | snidg |  |-  ( X e. V -> X e. { X } ) | 
						
							| 23 | 11 22 | syl |  |-  ( ph -> X e. { X } ) | 
						
							| 24 | 21 23 | sselid |  |-  ( ph -> X e. ( F u. { X } ) ) | 
						
							| 25 | 20 24 | sseldd |  |-  ( ph -> X e. ( E fldGen ( F u. { X } ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> X e. ( E fldGen ( F u. { X } ) ) ) | 
						
							| 27 | 5 1 2 9 10 18 | fldgenfldext |  |-  ( ph -> L /FldExt K ) | 
						
							| 28 |  | extdg1id |  |-  ( ( L /FldExt K /\ ( L [:] K ) = 1 ) -> L = K ) | 
						
							| 29 | 27 28 | sylan |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> L = K ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> ( Base ` L ) = ( Base ` K ) ) | 
						
							| 31 | 5 15 19 | fldgenssv |  |-  ( ph -> ( E fldGen ( F u. { X } ) ) C_ V ) | 
						
							| 32 | 2 5 | ressbas2 |  |-  ( ( E fldGen ( F u. { X } ) ) C_ V -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> ( E fldGen ( F u. { X } ) ) = ( Base ` L ) ) | 
						
							| 35 | 1 5 | ressbas2 |  |-  ( F C_ V -> F = ( Base ` K ) ) | 
						
							| 36 | 17 35 | syl |  |-  ( ph -> F = ( Base ` K ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> F = ( Base ` K ) ) | 
						
							| 38 | 30 34 37 | 3eqtr4d |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> ( E fldGen ( F u. { X } ) ) = F ) | 
						
							| 39 | 26 38 | eleqtrd |  |-  ( ( ph /\ ( L [:] K ) = 1 ) -> X e. F ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ ( L [:] K ) = 2 ) -> ( L [:] K ) = 2 ) | 
						
							| 41 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 42 |  | 2z |  |-  2 e. ZZ | 
						
							| 43 | 42 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 44 |  | extdgcl |  |-  ( L /FldExt K -> ( L [:] K ) e. NN0* ) | 
						
							| 45 | 27 44 | syl |  |-  ( ph -> ( L [:] K ) e. NN0* ) | 
						
							| 46 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 47 | 46 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 48 |  | eqid |  |-  ( var1 ` K ) = ( var1 ` K ) | 
						
							| 49 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 50 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 51 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 52 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 53 |  | eqid |  |-  ( ( 2 ( .g ` ( mulGrp ` P ) ) ( var1 ` K ) ) ( +g ` P ) ( ( ( ( algSc ` P ) ` A ) ( .r ` P ) ( var1 ` K ) ) ( +g ` P ) ( ( algSc ` P ) ` B ) ) ) = ( ( 2 ( .g ` ( mulGrp ` P ) ) ( var1 ` K ) ) ( +g ` P ) ( ( ( ( algSc ` P ) ` A ) ( .r ` P ) ( var1 ` K ) ) ( +g ` P ) ( ( algSc ` P ) ` B ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53 | rtelextdg2lem |  |-  ( ph -> ( L [:] K ) <_ 2 ) | 
						
							| 55 |  | xnn0lenn0nn0 |  |-  ( ( ( L [:] K ) e. NN0* /\ 2 e. NN0 /\ ( L [:] K ) <_ 2 ) -> ( L [:] K ) e. NN0 ) | 
						
							| 56 | 45 47 54 55 | syl3anc |  |-  ( ph -> ( L [:] K ) e. NN0 ) | 
						
							| 57 | 56 | nn0zd |  |-  ( ph -> ( L [:] K ) e. ZZ ) | 
						
							| 58 |  | extdggt0 |  |-  ( L /FldExt K -> 0 < ( L [:] K ) ) | 
						
							| 59 | 27 58 | syl |  |-  ( ph -> 0 < ( L [:] K ) ) | 
						
							| 60 |  | zgt0ge1 |  |-  ( ( L [:] K ) e. ZZ -> ( 0 < ( L [:] K ) <-> 1 <_ ( L [:] K ) ) ) | 
						
							| 61 | 60 | biimpa |  |-  ( ( ( L [:] K ) e. ZZ /\ 0 < ( L [:] K ) ) -> 1 <_ ( L [:] K ) ) | 
						
							| 62 | 57 59 61 | syl2anc |  |-  ( ph -> 1 <_ ( L [:] K ) ) | 
						
							| 63 | 41 43 57 62 54 | elfzd |  |-  ( ph -> ( L [:] K ) e. ( 1 ... 2 ) ) | 
						
							| 64 |  | fz12pr |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 65 | 63 64 | eleqtrdi |  |-  ( ph -> ( L [:] K ) e. { 1 , 2 } ) | 
						
							| 66 |  | elpri |  |-  ( ( L [:] K ) e. { 1 , 2 } -> ( ( L [:] K ) = 1 \/ ( L [:] K ) = 2 ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ph -> ( ( L [:] K ) = 1 \/ ( L [:] K ) = 2 ) ) | 
						
							| 68 | 39 40 67 | orim12da |  |-  ( ph -> ( X e. F \/ ( L [:] K ) = 2 ) ) |