Step |
Hyp |
Ref |
Expression |
1 |
|
elxnn0 |
|- ( M e. NN0* <-> ( M e. NN0 \/ M = +oo ) ) |
2 |
|
2a1 |
|- ( M e. NN0 -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
3 |
|
breq1 |
|- ( M = +oo -> ( M <_ N <-> +oo <_ N ) ) |
4 |
3
|
adantr |
|- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N <-> +oo <_ N ) ) |
5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
6 |
5
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
7 |
|
xgepnf |
|- ( N e. RR* -> ( +oo <_ N <-> N = +oo ) ) |
8 |
6 7
|
syl |
|- ( N e. NN0 -> ( +oo <_ N <-> N = +oo ) ) |
9 |
|
pnfnre |
|- +oo e/ RR |
10 |
|
eleq1 |
|- ( N = +oo -> ( N e. NN0 <-> +oo e. NN0 ) ) |
11 |
|
nn0re |
|- ( +oo e. NN0 -> +oo e. RR ) |
12 |
|
elnelall |
|- ( +oo e. RR -> ( +oo e/ RR -> M e. NN0 ) ) |
13 |
11 12
|
syl |
|- ( +oo e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) |
14 |
10 13
|
syl6bi |
|- ( N = +oo -> ( N e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) ) |
15 |
14
|
com13 |
|- ( +oo e/ RR -> ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) ) |
16 |
9 15
|
ax-mp |
|- ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) |
17 |
8 16
|
sylbid |
|- ( N e. NN0 -> ( +oo <_ N -> M e. NN0 ) ) |
18 |
17
|
adantl |
|- ( ( M = +oo /\ N e. NN0 ) -> ( +oo <_ N -> M e. NN0 ) ) |
19 |
4 18
|
sylbid |
|- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N -> M e. NN0 ) ) |
20 |
19
|
ex |
|- ( M = +oo -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
21 |
2 20
|
jaoi |
|- ( ( M e. NN0 \/ M = +oo ) -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
22 |
1 21
|
sylbi |
|- ( M e. NN0* -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
23 |
22
|
3imp |
|- ( ( M e. NN0* /\ N e. NN0 /\ M <_ N ) -> M e. NN0 ) |