| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
|- ( M e. NN0* <-> ( M e. NN0 \/ M = +oo ) ) |
| 2 |
|
2a1 |
|- ( M e. NN0 -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 3 |
|
breq1 |
|- ( M = +oo -> ( M <_ N <-> +oo <_ N ) ) |
| 4 |
3
|
adantr |
|- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N <-> +oo <_ N ) ) |
| 5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 6 |
5
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
| 7 |
|
xgepnf |
|- ( N e. RR* -> ( +oo <_ N <-> N = +oo ) ) |
| 8 |
6 7
|
syl |
|- ( N e. NN0 -> ( +oo <_ N <-> N = +oo ) ) |
| 9 |
|
pnfnre |
|- +oo e/ RR |
| 10 |
|
eleq1 |
|- ( N = +oo -> ( N e. NN0 <-> +oo e. NN0 ) ) |
| 11 |
|
nn0re |
|- ( +oo e. NN0 -> +oo e. RR ) |
| 12 |
|
pm2.24nel |
|- ( +oo e. RR -> ( +oo e/ RR -> M e. NN0 ) ) |
| 13 |
11 12
|
syl |
|- ( +oo e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) |
| 14 |
10 13
|
biimtrdi |
|- ( N = +oo -> ( N e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) ) |
| 15 |
14
|
com13 |
|- ( +oo e/ RR -> ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) ) |
| 16 |
9 15
|
ax-mp |
|- ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) |
| 17 |
8 16
|
sylbid |
|- ( N e. NN0 -> ( +oo <_ N -> M e. NN0 ) ) |
| 18 |
17
|
adantl |
|- ( ( M = +oo /\ N e. NN0 ) -> ( +oo <_ N -> M e. NN0 ) ) |
| 19 |
4 18
|
sylbid |
|- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N -> M e. NN0 ) ) |
| 20 |
19
|
ex |
|- ( M = +oo -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 21 |
2 20
|
jaoi |
|- ( ( M e. NN0 \/ M = +oo ) -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 22 |
1 21
|
sylbi |
|- ( M e. NN0* -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 23 |
22
|
3imp |
|- ( ( M e. NN0* /\ N e. NN0 /\ M <_ N ) -> M e. NN0 ) |