Description: An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | xgepnf | |- ( A e. RR* -> ( +oo <_ A <-> A = +oo ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr | |- +oo e. RR* |
|
2 | xrlenlt | |- ( ( +oo e. RR* /\ A e. RR* ) -> ( +oo <_ A <-> -. A < +oo ) ) |
|
3 | 1 2 | mpan | |- ( A e. RR* -> ( +oo <_ A <-> -. A < +oo ) ) |
4 | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
|
5 | 3 4 | bitr4d | |- ( A e. RR* -> ( +oo <_ A <-> A = +oo ) ) |