| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtelextdg2.1 |  |-  K = ( E |`s F ) | 
						
							| 2 |  | rtelextdg2.2 |  |-  L = ( E |`s ( E fldGen ( F u. { X } ) ) ) | 
						
							| 3 |  | rtelextdg2.3 |  |-  .0. = ( 0g ` E ) | 
						
							| 4 |  | rtelextdg2.4 |  |-  P = ( Poly1 ` K ) | 
						
							| 5 |  | rtelextdg2.5 |  |-  V = ( Base ` E ) | 
						
							| 6 |  | rtelextdg2.6 |  |-  .x. = ( .r ` E ) | 
						
							| 7 |  | rtelextdg2.7 |  |-  .+ = ( +g ` E ) | 
						
							| 8 |  | rtelextdg2.8 |  |-  .^ = ( .g ` ( mulGrp ` E ) ) | 
						
							| 9 |  | rtelextdg2.9 |  |-  ( ph -> E e. Field ) | 
						
							| 10 |  | rtelextdg2.10 |  |-  ( ph -> F e. ( SubDRing ` E ) ) | 
						
							| 11 |  | rtelextdg2.11 |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | rtelextdg2.12 |  |-  ( ph -> A e. F ) | 
						
							| 13 |  | rtelextdg2.13 |  |-  ( ph -> B e. F ) | 
						
							| 14 |  | rtelextdg2.14 |  |-  ( ph -> ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) = .0. ) | 
						
							| 15 |  | rtelextdg2lem.1 |  |-  Y = ( var1 ` K ) | 
						
							| 16 |  | rtelextdg2lem.2 |  |-  .(+) = ( +g ` P ) | 
						
							| 17 |  | rtelextdg2lem.3 |  |-  .(x) = ( .r ` P ) | 
						
							| 18 |  | rtelextdg2lem.4 |  |-  ./\ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 19 |  | rtelextdg2lem.5 |  |-  U = ( algSc ` P ) | 
						
							| 20 |  | rtelextdg2lem.6 |  |-  G = ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) | 
						
							| 21 |  | eqid |  |-  ( deg1 ` E ) = ( deg1 ` E ) | 
						
							| 22 |  | eqid |  |-  ( E minPoly F ) = ( E minPoly F ) | 
						
							| 23 |  | fveq2 |  |-  ( p = G -> ( ( E evalSub1 F ) ` p ) = ( ( E evalSub1 F ) ` G ) ) | 
						
							| 24 | 23 | fveq1d |  |-  ( p = G -> ( ( ( E evalSub1 F ) ` p ) ` X ) = ( ( ( E evalSub1 F ) ` G ) ` X ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( p = G -> ( ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. <-> ( ( ( E evalSub1 F ) ` G ) ` X ) = .0. ) ) | 
						
							| 26 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 27 |  | fldsdrgfld |  |-  ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) | 
						
							| 28 | 9 10 27 | syl2anc |  |-  ( ph -> ( E |`s F ) e. Field ) | 
						
							| 29 | 28 | fldcrngd |  |-  ( ph -> ( E |`s F ) e. CRing ) | 
						
							| 30 | 1 29 | eqeltrid |  |-  ( ph -> K e. CRing ) | 
						
							| 31 | 30 | crngringd |  |-  ( ph -> K e. Ring ) | 
						
							| 32 | 4 | ply1ring |  |-  ( K e. Ring -> P e. Ring ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> P e. Ring ) | 
						
							| 34 | 33 | ringgrpd |  |-  ( ph -> P e. Grp ) | 
						
							| 35 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 36 | 35 26 | mgpbas |  |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) | 
						
							| 37 | 35 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 38 | 33 37 | syl |  |-  ( ph -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 39 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 40 | 39 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 41 | 15 4 26 | vr1cl |  |-  ( K e. Ring -> Y e. ( Base ` P ) ) | 
						
							| 42 | 31 41 | syl |  |-  ( ph -> Y e. ( Base ` P ) ) | 
						
							| 43 | 36 18 38 40 42 | mulgnn0cld |  |-  ( ph -> ( 2 ./\ Y ) e. ( Base ` P ) ) | 
						
							| 44 | 9 | fldcrngd |  |-  ( ph -> E e. CRing ) | 
						
							| 45 |  | sdrgsubrg |  |-  ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) | 
						
							| 46 | 10 45 | syl |  |-  ( ph -> F e. ( SubRing ` E ) ) | 
						
							| 47 | 4 1 19 26 44 46 12 | ressasclcl |  |-  ( ph -> ( U ` A ) e. ( Base ` P ) ) | 
						
							| 48 | 26 17 33 47 42 | ringcld |  |-  ( ph -> ( ( U ` A ) .(x) Y ) e. ( Base ` P ) ) | 
						
							| 49 | 4 1 19 26 44 46 13 | ressasclcl |  |-  ( ph -> ( U ` B ) e. ( Base ` P ) ) | 
						
							| 50 | 26 16 34 48 49 | grpcld |  |-  ( ph -> ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) | 
						
							| 51 | 26 16 34 43 50 | grpcld |  |-  ( ph -> ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) e. ( Base ` P ) ) | 
						
							| 52 | 20 51 | eqeltrid |  |-  ( ph -> G e. ( Base ` P ) ) | 
						
							| 53 | 20 | fveq2i |  |-  ( coe1 ` G ) = ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) | 
						
							| 54 | 53 | fveq1i |  |-  ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) | 
						
							| 55 |  | eqid |  |-  ( +g ` K ) = ( +g ` K ) | 
						
							| 56 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) ) | 
						
							| 57 | 31 43 50 40 56 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) ) | 
						
							| 58 |  | eqid |  |-  ( 0g ` K ) = ( 0g ` K ) | 
						
							| 59 |  | eqid |  |-  ( 1r ` K ) = ( 1r ` K ) | 
						
							| 60 | 4 15 18 31 40 58 59 | coe1mon |  |-  ( ph -> ( coe1 ` ( 2 ./\ Y ) ) = ( i e. NN0 |-> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) ) ) | 
						
							| 61 |  | simpr |  |-  ( ( ph /\ i = 2 ) -> i = 2 ) | 
						
							| 62 | 61 | iftrued |  |-  ( ( ph /\ i = 2 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 1r ` K ) ) | 
						
							| 63 |  | fvexd |  |-  ( ph -> ( 1r ` K ) e. _V ) | 
						
							| 64 | 60 62 40 63 | fvmptd |  |-  ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) = ( 1r ` K ) ) | 
						
							| 65 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) ) | 
						
							| 66 | 31 48 49 40 65 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) ) | 
						
							| 67 | 5 | sdrgss |  |-  ( F e. ( SubDRing ` E ) -> F C_ V ) | 
						
							| 68 | 1 5 | ressbas2 |  |-  ( F C_ V -> F = ( Base ` K ) ) | 
						
							| 69 | 10 67 68 | 3syl |  |-  ( ph -> F = ( Base ` K ) ) | 
						
							| 70 | 12 69 | eleqtrd |  |-  ( ph -> A e. ( Base ` K ) ) | 
						
							| 71 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 72 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 73 | 4 26 71 19 17 72 | coe1sclmulfv |  |-  ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) ) | 
						
							| 74 | 31 70 42 40 73 | syl121anc |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) ) | 
						
							| 75 | 4 15 31 58 59 | coe1vr1 |  |-  ( ph -> ( coe1 ` Y ) = ( i e. NN0 |-> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) ) ) | 
						
							| 76 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 77 | 76 | nesymi |  |-  -. 2 = 1 | 
						
							| 78 |  | eqeq1 |  |-  ( i = 2 -> ( i = 1 <-> 2 = 1 ) ) | 
						
							| 79 | 77 78 | mtbiri |  |-  ( i = 2 -> -. i = 1 ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ph /\ i = 2 ) -> -. i = 1 ) | 
						
							| 81 | 80 | iffalsed |  |-  ( ( ph /\ i = 2 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 82 |  | fvexd |  |-  ( ph -> ( 0g ` K ) e. _V ) | 
						
							| 83 | 75 81 40 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` Y ) ` 2 ) = ( 0g ` K ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) = ( A ( .r ` K ) ( 0g ` K ) ) ) | 
						
							| 85 | 71 72 58 31 70 | ringrzd |  |-  ( ph -> ( A ( .r ` K ) ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 86 | 74 84 85 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( 0g ` K ) ) | 
						
							| 87 | 13 69 | eleqtrd |  |-  ( ph -> B e. ( Base ` K ) ) | 
						
							| 88 | 4 19 71 58 | coe1scl |  |-  ( ( K e. Ring /\ B e. ( Base ` K ) ) -> ( coe1 ` ( U ` B ) ) = ( i e. NN0 |-> if ( i = 0 , B , ( 0g ` K ) ) ) ) | 
						
							| 89 | 31 87 88 | syl2anc |  |-  ( ph -> ( coe1 ` ( U ` B ) ) = ( i e. NN0 |-> if ( i = 0 , B , ( 0g ` K ) ) ) ) | 
						
							| 90 |  | 0ne2 |  |-  0 =/= 2 | 
						
							| 91 | 90 | neii |  |-  -. 0 = 2 | 
						
							| 92 |  | eqeq1 |  |-  ( i = 0 -> ( i = 2 <-> 0 = 2 ) ) | 
						
							| 93 | 91 92 | mtbiri |  |-  ( i = 0 -> -. i = 2 ) | 
						
							| 94 | 93 61 | nsyl3 |  |-  ( ( ph /\ i = 2 ) -> -. i = 0 ) | 
						
							| 95 | 94 | iffalsed |  |-  ( ( ph /\ i = 2 ) -> if ( i = 0 , B , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 96 | 89 95 40 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` ( U ` B ) ) ` 2 ) = ( 0g ` K ) ) | 
						
							| 97 | 86 96 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) = ( ( 0g ` K ) ( +g ` K ) ( 0g ` K ) ) ) | 
						
							| 98 | 31 | ringgrpd |  |-  ( ph -> K e. Grp ) | 
						
							| 99 | 71 58 | grpidcl |  |-  ( K e. Grp -> ( 0g ` K ) e. ( Base ` K ) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ph -> ( 0g ` K ) e. ( Base ` K ) ) | 
						
							| 101 | 71 55 58 98 100 | grpridd |  |-  ( ph -> ( ( 0g ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 102 | 66 97 101 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( 0g ` K ) ) | 
						
							| 103 | 64 102 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) = ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) ) | 
						
							| 104 | 71 59 | ringidcl |  |-  ( K e. Ring -> ( 1r ` K ) e. ( Base ` K ) ) | 
						
							| 105 | 31 104 | syl |  |-  ( ph -> ( 1r ` K ) e. ( Base ` K ) ) | 
						
							| 106 | 71 55 58 98 105 | grpridd |  |-  ( ph -> ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 1r ` K ) ) | 
						
							| 107 | 44 | crngringd |  |-  ( ph -> E e. Ring ) | 
						
							| 108 |  | eqid |  |-  ( 1r ` E ) = ( 1r ` E ) | 
						
							| 109 | 108 | subrg1cl |  |-  ( F e. ( SubRing ` E ) -> ( 1r ` E ) e. F ) | 
						
							| 110 | 46 109 | syl |  |-  ( ph -> ( 1r ` E ) e. F ) | 
						
							| 111 | 10 67 | syl |  |-  ( ph -> F C_ V ) | 
						
							| 112 | 1 5 108 | ress1r |  |-  ( ( E e. Ring /\ ( 1r ` E ) e. F /\ F C_ V ) -> ( 1r ` E ) = ( 1r ` K ) ) | 
						
							| 113 | 107 110 111 112 | syl3anc |  |-  ( ph -> ( 1r ` E ) = ( 1r ` K ) ) | 
						
							| 114 | 106 113 | eqtr4d |  |-  ( ph -> ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 1r ` E ) ) | 
						
							| 115 | 57 103 114 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( 1r ` E ) ) | 
						
							| 116 | 54 115 | eqtrid |  |-  ( ph -> ( ( coe1 ` G ) ` 2 ) = ( 1r ` E ) ) | 
						
							| 117 | 9 | flddrngd |  |-  ( ph -> E e. DivRing ) | 
						
							| 118 |  | drngnzr |  |-  ( E e. DivRing -> E e. NzRing ) | 
						
							| 119 | 108 3 | nzrnz |  |-  ( E e. NzRing -> ( 1r ` E ) =/= .0. ) | 
						
							| 120 | 117 118 119 | 3syl |  |-  ( ph -> ( 1r ` E ) =/= .0. ) | 
						
							| 121 | 116 120 | eqnetrd |  |-  ( ph -> ( ( coe1 ` G ) ` 2 ) =/= .0. ) | 
						
							| 122 |  | fveq2 |  |-  ( G = ( 0g ` P ) -> ( coe1 ` G ) = ( coe1 ` ( 0g ` P ) ) ) | 
						
							| 123 | 122 | fveq1d |  |-  ( G = ( 0g ` P ) -> ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` ( 0g ` P ) ) ` 2 ) ) | 
						
							| 124 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 125 | 4 124 58 31 40 | coe1zfv |  |-  ( ph -> ( ( coe1 ` ( 0g ` P ) ) ` 2 ) = ( 0g ` K ) ) | 
						
							| 126 | 107 | ringgrpd |  |-  ( ph -> E e. Grp ) | 
						
							| 127 | 126 | grpmndd |  |-  ( ph -> E e. Mnd ) | 
						
							| 128 |  | subrgsubg |  |-  ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) | 
						
							| 129 | 46 128 | syl |  |-  ( ph -> F e. ( SubGrp ` E ) ) | 
						
							| 130 | 3 | subg0cl |  |-  ( F e. ( SubGrp ` E ) -> .0. e. F ) | 
						
							| 131 | 129 130 | syl |  |-  ( ph -> .0. e. F ) | 
						
							| 132 | 1 5 3 | ress0g |  |-  ( ( E e. Mnd /\ .0. e. F /\ F C_ V ) -> .0. = ( 0g ` K ) ) | 
						
							| 133 | 127 131 111 132 | syl3anc |  |-  ( ph -> .0. = ( 0g ` K ) ) | 
						
							| 134 | 125 133 | eqtr4d |  |-  ( ph -> ( ( coe1 ` ( 0g ` P ) ) ` 2 ) = .0. ) | 
						
							| 135 | 123 134 | sylan9eqr |  |-  ( ( ph /\ G = ( 0g ` P ) ) -> ( ( coe1 ` G ) ` 2 ) = .0. ) | 
						
							| 136 | 121 135 | mteqand |  |-  ( ph -> G =/= ( 0g ` P ) ) | 
						
							| 137 | 20 | fveq2i |  |-  ( ( deg1 ` K ) ` G ) = ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) | 
						
							| 138 |  | eqid |  |-  ( deg1 ` K ) = ( deg1 ` K ) | 
						
							| 139 |  | 2re |  |-  2 e. RR | 
						
							| 140 | 139 | rexri |  |-  2 e. RR* | 
						
							| 141 | 140 | a1i |  |-  ( ph -> 2 e. RR* ) | 
						
							| 142 | 138 4 26 | deg1xrcl |  |-  ( ( ( U ` A ) .(x) Y ) e. ( Base ` P ) -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) e. RR* ) | 
						
							| 143 | 48 142 | syl |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) e. RR* ) | 
						
							| 144 |  | 1xr |  |-  1 e. RR* | 
						
							| 145 | 144 | a1i |  |-  ( ph -> 1 e. RR* ) | 
						
							| 146 | 138 4 71 26 17 19 | deg1mul3le |  |-  ( ( K e. Ring /\ A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ ( ( deg1 ` K ) ` Y ) ) | 
						
							| 147 | 31 70 42 146 | syl3anc |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ ( ( deg1 ` K ) ` Y ) ) | 
						
							| 148 | 1 28 | eqeltrid |  |-  ( ph -> K e. Field ) | 
						
							| 149 | 148 | flddrngd |  |-  ( ph -> K e. DivRing ) | 
						
							| 150 |  | drngnzr |  |-  ( K e. DivRing -> K e. NzRing ) | 
						
							| 151 | 149 150 | syl |  |-  ( ph -> K e. NzRing ) | 
						
							| 152 | 138 4 15 151 | deg1vr |  |-  ( ph -> ( ( deg1 ` K ) ` Y ) = 1 ) | 
						
							| 153 | 147 152 | breqtrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ 1 ) | 
						
							| 154 |  | 1lt2 |  |-  1 < 2 | 
						
							| 155 | 154 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 156 | 143 145 141 153 155 | xrlelttrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) < 2 ) | 
						
							| 157 | 138 4 26 | deg1xrcl |  |-  ( ( U ` B ) e. ( Base ` P ) -> ( ( deg1 ` K ) ` ( U ` B ) ) e. RR* ) | 
						
							| 158 | 49 157 | syl |  |-  ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) e. RR* ) | 
						
							| 159 |  | 0xr |  |-  0 e. RR* | 
						
							| 160 | 159 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 161 | 138 4 71 19 | deg1sclle |  |-  ( ( K e. Ring /\ B e. ( Base ` K ) ) -> ( ( deg1 ` K ) ` ( U ` B ) ) <_ 0 ) | 
						
							| 162 | 31 87 161 | syl2anc |  |-  ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) <_ 0 ) | 
						
							| 163 |  | 2pos |  |-  0 < 2 | 
						
							| 164 | 163 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 165 | 158 160 141 162 164 | xrlelttrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) < 2 ) | 
						
							| 166 | 4 138 31 26 16 48 49 141 156 165 | deg1addlt |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) < 2 ) | 
						
							| 167 | 138 4 15 35 18 | deg1pw |  |-  ( ( K e. NzRing /\ 2 e. NN0 ) -> ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) = 2 ) | 
						
							| 168 | 151 40 167 | syl2anc |  |-  ( ph -> ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) = 2 ) | 
						
							| 169 | 166 168 | breqtrrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) < ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) ) | 
						
							| 170 | 4 138 31 26 16 43 50 169 | deg1add |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) = ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) ) | 
						
							| 171 | 170 168 | eqtrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) = 2 ) | 
						
							| 172 | 137 171 | eqtrid |  |-  ( ph -> ( ( deg1 ` K ) ` G ) = 2 ) | 
						
							| 173 | 172 | fveq2d |  |-  ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( ( coe1 ` G ) ` 2 ) ) | 
						
							| 174 | 173 116 113 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( 1r ` K ) ) | 
						
							| 175 |  | eqid |  |-  ( Monic1p ` K ) = ( Monic1p ` K ) | 
						
							| 176 | 4 26 124 138 175 59 | ismon1p |  |-  ( G e. ( Monic1p ` K ) <-> ( G e. ( Base ` P ) /\ G =/= ( 0g ` P ) /\ ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( 1r ` K ) ) ) | 
						
							| 177 | 52 136 174 176 | syl3anbrc |  |-  ( ph -> G e. ( Monic1p ` K ) ) | 
						
							| 178 |  | eqid |  |-  ( E evalSub1 F ) = ( E evalSub1 F ) | 
						
							| 179 |  | eqid |  |-  ( eval1 ` E ) = ( eval1 ` E ) | 
						
							| 180 | 178 5 4 1 26 179 44 46 | ressply1evl |  |-  ( ph -> ( E evalSub1 F ) = ( ( eval1 ` E ) |` ( Base ` P ) ) ) | 
						
							| 181 | 180 | fveq1d |  |-  ( ph -> ( ( E evalSub1 F ) ` G ) = ( ( ( eval1 ` E ) |` ( Base ` P ) ) ` G ) ) | 
						
							| 182 | 52 | fvresd |  |-  ( ph -> ( ( ( eval1 ` E ) |` ( Base ` P ) ) ` G ) = ( ( eval1 ` E ) ` G ) ) | 
						
							| 183 | 181 182 | eqtrd |  |-  ( ph -> ( ( E evalSub1 F ) ` G ) = ( ( eval1 ` E ) ` G ) ) | 
						
							| 184 | 183 | fveq1d |  |-  ( ph -> ( ( ( E evalSub1 F ) ` G ) ` X ) = ( ( ( eval1 ` E ) ` G ) ` X ) ) | 
						
							| 185 |  | eqid |  |-  ( Poly1 ` E ) = ( Poly1 ` E ) | 
						
							| 186 |  | eqid |  |-  ( Base ` ( Poly1 ` E ) ) = ( Base ` ( Poly1 ` E ) ) | 
						
							| 187 |  | eqid |  |-  ( coe1 ` G ) = ( coe1 ` G ) | 
						
							| 188 |  | eqid |  |-  ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` G ) ` 2 ) | 
						
							| 189 |  | eqid |  |-  ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` G ) ` 1 ) | 
						
							| 190 |  | eqid |  |-  ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` G ) ` 0 ) | 
						
							| 191 |  | eqid |  |-  ( PwSer1 ` K ) = ( PwSer1 ` K ) | 
						
							| 192 |  | eqid |  |-  ( Base ` ( PwSer1 ` K ) ) = ( Base ` ( PwSer1 ` K ) ) | 
						
							| 193 | 185 1 4 26 46 191 192 186 | ressply1bas2 |  |-  ( ph -> ( Base ` P ) = ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) | 
						
							| 194 | 52 193 | eleqtrd |  |-  ( ph -> G e. ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) | 
						
							| 195 | 194 | elin2d |  |-  ( ph -> G e. ( Base ` ( Poly1 ` E ) ) ) | 
						
							| 196 | 1 21 4 26 52 46 | ressdeg1 |  |-  ( ph -> ( ( deg1 ` E ) ` G ) = ( ( deg1 ` K ) ` G ) ) | 
						
							| 197 | 196 172 | eqtrd |  |-  ( ph -> ( ( deg1 ` E ) ` G ) = 2 ) | 
						
							| 198 | 185 179 5 186 6 7 8 187 21 188 189 190 44 195 197 11 | evl1deg2 |  |-  ( ph -> ( ( ( eval1 ` E ) ` G ) ` X ) = ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) ) | 
						
							| 199 | 116 | oveq1d |  |-  ( ph -> ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) = ( ( 1r ` E ) .x. ( 2 .^ X ) ) ) | 
						
							| 200 |  | eqid |  |-  ( mulGrp ` E ) = ( mulGrp ` E ) | 
						
							| 201 | 200 5 | mgpbas |  |-  V = ( Base ` ( mulGrp ` E ) ) | 
						
							| 202 | 200 | ringmgp |  |-  ( E e. Ring -> ( mulGrp ` E ) e. Mnd ) | 
						
							| 203 | 107 202 | syl |  |-  ( ph -> ( mulGrp ` E ) e. Mnd ) | 
						
							| 204 | 201 8 203 40 11 | mulgnn0cld |  |-  ( ph -> ( 2 .^ X ) e. V ) | 
						
							| 205 | 5 6 108 107 204 | ringlidmd |  |-  ( ph -> ( ( 1r ` E ) .x. ( 2 .^ X ) ) = ( 2 .^ X ) ) | 
						
							| 206 | 199 205 | eqtrd |  |-  ( ph -> ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) = ( 2 .^ X ) ) | 
						
							| 207 | 53 | fveq1i |  |-  ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) | 
						
							| 208 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 209 | 208 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 210 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) ) | 
						
							| 211 | 31 43 50 209 210 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) ) | 
						
							| 212 | 76 | neii |  |-  -. 1 = 2 | 
						
							| 213 |  | eqeq1 |  |-  ( i = 1 -> ( i = 2 <-> 1 = 2 ) ) | 
						
							| 214 | 213 | notbid |  |-  ( i = 1 -> ( -. i = 2 <-> -. 1 = 2 ) ) | 
						
							| 215 | 214 | adantl |  |-  ( ( ph /\ i = 1 ) -> ( -. i = 2 <-> -. 1 = 2 ) ) | 
						
							| 216 | 212 215 | mpbiri |  |-  ( ( ph /\ i = 1 ) -> -. i = 2 ) | 
						
							| 217 | 216 | iffalsed |  |-  ( ( ph /\ i = 1 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 218 | 60 217 209 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) = ( 0g ` K ) ) | 
						
							| 219 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) ) | 
						
							| 220 | 31 48 49 209 219 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) ) | 
						
							| 221 | 4 26 71 19 17 72 | coe1sclmulfv |  |-  ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) ) | 
						
							| 222 | 31 70 42 209 221 | syl121anc |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) ) | 
						
							| 223 |  | simpr |  |-  ( ( ph /\ i = 1 ) -> i = 1 ) | 
						
							| 224 | 223 | iftrued |  |-  ( ( ph /\ i = 1 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 1r ` K ) ) | 
						
							| 225 | 75 224 209 63 | fvmptd |  |-  ( ph -> ( ( coe1 ` Y ) ` 1 ) = ( 1r ` K ) ) | 
						
							| 226 | 225 | oveq2d |  |-  ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) = ( A ( .r ` K ) ( 1r ` K ) ) ) | 
						
							| 227 | 71 72 59 31 70 | ringridmd |  |-  ( ph -> ( A ( .r ` K ) ( 1r ` K ) ) = A ) | 
						
							| 228 | 222 226 227 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = A ) | 
						
							| 229 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 230 | 229 | nesymi |  |-  -. 1 = 0 | 
						
							| 231 |  | eqeq1 |  |-  ( i = 1 -> ( i = 0 <-> 1 = 0 ) ) | 
						
							| 232 | 230 231 | mtbiri |  |-  ( i = 1 -> -. i = 0 ) | 
						
							| 233 | 232 | adantl |  |-  ( ( ph /\ i = 1 ) -> -. i = 0 ) | 
						
							| 234 | 233 | iffalsed |  |-  ( ( ph /\ i = 1 ) -> if ( i = 0 , B , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 235 | 89 234 209 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` ( U ` B ) ) ` 1 ) = ( 0g ` K ) ) | 
						
							| 236 | 228 235 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) = ( A ( +g ` K ) ( 0g ` K ) ) ) | 
						
							| 237 | 71 55 58 98 70 | grpridd |  |-  ( ph -> ( A ( +g ` K ) ( 0g ` K ) ) = A ) | 
						
							| 238 | 220 236 237 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = A ) | 
						
							| 239 | 218 238 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) = ( ( 0g ` K ) ( +g ` K ) A ) ) | 
						
							| 240 | 71 55 58 98 70 | grplidd |  |-  ( ph -> ( ( 0g ` K ) ( +g ` K ) A ) = A ) | 
						
							| 241 | 211 239 240 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = A ) | 
						
							| 242 | 207 241 | eqtrid |  |-  ( ph -> ( ( coe1 ` G ) ` 1 ) = A ) | 
						
							| 243 | 242 | oveq1d |  |-  ( ph -> ( ( ( coe1 ` G ) ` 1 ) .x. X ) = ( A .x. X ) ) | 
						
							| 244 | 53 | fveq1i |  |-  ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) | 
						
							| 245 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 246 | 245 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 247 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) ) | 
						
							| 248 | 31 43 50 246 247 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) ) | 
						
							| 249 | 93 | adantl |  |-  ( ( ph /\ i = 0 ) -> -. i = 2 ) | 
						
							| 250 | 249 | iffalsed |  |-  ( ( ph /\ i = 0 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 251 | 60 250 246 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) = ( 0g ` K ) ) | 
						
							| 252 | 4 26 16 55 | coe1addfv |  |-  ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) ) | 
						
							| 253 | 31 48 49 246 252 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) ) | 
						
							| 254 | 4 26 71 19 17 72 | coe1sclmulfv |  |-  ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) ) | 
						
							| 255 | 31 70 42 246 254 | syl121anc |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) ) | 
						
							| 256 | 229 | neii |  |-  -. 0 = 1 | 
						
							| 257 |  | eqeq1 |  |-  ( i = 0 -> ( i = 1 <-> 0 = 1 ) ) | 
						
							| 258 | 256 257 | mtbiri |  |-  ( i = 0 -> -. i = 1 ) | 
						
							| 259 | 258 | adantl |  |-  ( ( ph /\ i = 0 ) -> -. i = 1 ) | 
						
							| 260 | 259 | iffalsed |  |-  ( ( ph /\ i = 0 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) | 
						
							| 261 | 75 260 246 82 | fvmptd |  |-  ( ph -> ( ( coe1 ` Y ) ` 0 ) = ( 0g ` K ) ) | 
						
							| 262 | 261 | oveq2d |  |-  ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) = ( A ( .r ` K ) ( 0g ` K ) ) ) | 
						
							| 263 | 255 262 85 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( 0g ` K ) ) | 
						
							| 264 | 4 19 71 | ply1sclid |  |-  ( ( K e. Ring /\ B e. ( Base ` K ) ) -> B = ( ( coe1 ` ( U ` B ) ) ` 0 ) ) | 
						
							| 265 | 31 87 264 | syl2anc |  |-  ( ph -> B = ( ( coe1 ` ( U ` B ) ) ` 0 ) ) | 
						
							| 266 | 265 | eqcomd |  |-  ( ph -> ( ( coe1 ` ( U ` B ) ) ` 0 ) = B ) | 
						
							| 267 | 263 266 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) = ( ( 0g ` K ) ( +g ` K ) B ) ) | 
						
							| 268 | 71 55 58 98 87 | grplidd |  |-  ( ph -> ( ( 0g ` K ) ( +g ` K ) B ) = B ) | 
						
							| 269 | 253 267 268 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = B ) | 
						
							| 270 | 251 269 | oveq12d |  |-  ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) = ( ( 0g ` K ) ( +g ` K ) B ) ) | 
						
							| 271 | 248 270 268 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = B ) | 
						
							| 272 | 244 271 | eqtrid |  |-  ( ph -> ( ( coe1 ` G ) ` 0 ) = B ) | 
						
							| 273 | 243 272 | oveq12d |  |-  ( ph -> ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) = ( ( A .x. X ) .+ B ) ) | 
						
							| 274 | 206 273 | oveq12d |  |-  ( ph -> ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) = ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) ) | 
						
							| 275 | 274 14 | eqtrd |  |-  ( ph -> ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) = .0. ) | 
						
							| 276 | 184 198 275 | 3eqtrd |  |-  ( ph -> ( ( ( E evalSub1 F ) ` G ) ` X ) = .0. ) | 
						
							| 277 | 25 177 276 | rspcedvdw |  |-  ( ph -> E. p e. ( Monic1p ` K ) ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. ) | 
						
							| 278 | 178 1 5 3 44 46 | elirng |  |-  ( ph -> ( X e. ( E IntgRing F ) <-> ( X e. V /\ E. p e. ( Monic1p ` K ) ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. ) ) ) | 
						
							| 279 | 11 277 278 | mpbir2and |  |-  ( ph -> X e. ( E IntgRing F ) ) | 
						
							| 280 | 1 2 21 22 9 10 279 | algextdeg |  |-  ( ph -> ( L [:] K ) = ( ( deg1 ` E ) ` ( ( E minPoly F ) ` X ) ) ) | 
						
							| 281 | 1 | fveq2i |  |-  ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) | 
						
							| 282 | 4 281 | eqtri |  |-  P = ( Poly1 ` ( E |`s F ) ) | 
						
							| 283 |  | eqid |  |-  { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` X ) = .0. } = { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` X ) = .0. } | 
						
							| 284 |  | eqid |  |-  ( RSpan ` P ) = ( RSpan ` P ) | 
						
							| 285 |  | eqid |  |-  ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) | 
						
							| 286 | 178 282 5 9 10 11 3 283 284 285 22 | minplycl |  |-  ( ph -> ( ( E minPoly F ) ` X ) e. ( Base ` P ) ) | 
						
							| 287 | 1 21 4 26 286 46 | ressdeg1 |  |-  ( ph -> ( ( deg1 ` E ) ` ( ( E minPoly F ) ` X ) ) = ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) ) | 
						
							| 288 | 280 287 | eqtrd |  |-  ( ph -> ( L [:] K ) = ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) ) | 
						
							| 289 | 1 | fveq2i |  |-  ( deg1 ` K ) = ( deg1 ` ( E |`s F ) ) | 
						
							| 290 | 178 282 5 9 10 11 3 22 289 124 26 276 52 136 | minplymindeg |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) <_ ( ( deg1 ` K ) ` G ) ) | 
						
							| 291 | 288 290 | eqbrtrd |  |-  ( ph -> ( L [:] K ) <_ ( ( deg1 ` K ) ` G ) ) | 
						
							| 292 | 291 172 | breqtrd |  |-  ( ph -> ( L [:] K ) <_ 2 ) |