| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtelextdg2.1 |
|- K = ( E |`s F ) |
| 2 |
|
rtelextdg2.2 |
|- L = ( E |`s ( E fldGen ( F u. { X } ) ) ) |
| 3 |
|
rtelextdg2.3 |
|- .0. = ( 0g ` E ) |
| 4 |
|
rtelextdg2.4 |
|- P = ( Poly1 ` K ) |
| 5 |
|
rtelextdg2.5 |
|- V = ( Base ` E ) |
| 6 |
|
rtelextdg2.6 |
|- .x. = ( .r ` E ) |
| 7 |
|
rtelextdg2.7 |
|- .+ = ( +g ` E ) |
| 8 |
|
rtelextdg2.8 |
|- .^ = ( .g ` ( mulGrp ` E ) ) |
| 9 |
|
rtelextdg2.9 |
|- ( ph -> E e. Field ) |
| 10 |
|
rtelextdg2.10 |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 11 |
|
rtelextdg2.11 |
|- ( ph -> X e. V ) |
| 12 |
|
rtelextdg2.12 |
|- ( ph -> A e. F ) |
| 13 |
|
rtelextdg2.13 |
|- ( ph -> B e. F ) |
| 14 |
|
rtelextdg2.14 |
|- ( ph -> ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) = .0. ) |
| 15 |
|
rtelextdg2lem.1 |
|- Y = ( var1 ` K ) |
| 16 |
|
rtelextdg2lem.2 |
|- .(+) = ( +g ` P ) |
| 17 |
|
rtelextdg2lem.3 |
|- .(x) = ( .r ` P ) |
| 18 |
|
rtelextdg2lem.4 |
|- ./\ = ( .g ` ( mulGrp ` P ) ) |
| 19 |
|
rtelextdg2lem.5 |
|- U = ( algSc ` P ) |
| 20 |
|
rtelextdg2lem.6 |
|- G = ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) |
| 21 |
|
eqid |
|- ( deg1 ` E ) = ( deg1 ` E ) |
| 22 |
|
eqid |
|- ( E minPoly F ) = ( E minPoly F ) |
| 23 |
|
fveq2 |
|- ( p = G -> ( ( E evalSub1 F ) ` p ) = ( ( E evalSub1 F ) ` G ) ) |
| 24 |
23
|
fveq1d |
|- ( p = G -> ( ( ( E evalSub1 F ) ` p ) ` X ) = ( ( ( E evalSub1 F ) ` G ) ` X ) ) |
| 25 |
24
|
eqeq1d |
|- ( p = G -> ( ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. <-> ( ( ( E evalSub1 F ) ` G ) ` X ) = .0. ) ) |
| 26 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 27 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
| 28 |
9 10 27
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
| 29 |
28
|
fldcrngd |
|- ( ph -> ( E |`s F ) e. CRing ) |
| 30 |
1 29
|
eqeltrid |
|- ( ph -> K e. CRing ) |
| 31 |
30
|
crngringd |
|- ( ph -> K e. Ring ) |
| 32 |
4
|
ply1ring |
|- ( K e. Ring -> P e. Ring ) |
| 33 |
31 32
|
syl |
|- ( ph -> P e. Ring ) |
| 34 |
33
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 35 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 36 |
35 26
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 37 |
35
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 38 |
33 37
|
syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 39 |
|
2nn0 |
|- 2 e. NN0 |
| 40 |
39
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 41 |
15 4 26
|
vr1cl |
|- ( K e. Ring -> Y e. ( Base ` P ) ) |
| 42 |
31 41
|
syl |
|- ( ph -> Y e. ( Base ` P ) ) |
| 43 |
36 18 38 40 42
|
mulgnn0cld |
|- ( ph -> ( 2 ./\ Y ) e. ( Base ` P ) ) |
| 44 |
9
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 45 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 46 |
10 45
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 47 |
4 1 19 26 44 46 12
|
ressasclcl |
|- ( ph -> ( U ` A ) e. ( Base ` P ) ) |
| 48 |
26 17 33 47 42
|
ringcld |
|- ( ph -> ( ( U ` A ) .(x) Y ) e. ( Base ` P ) ) |
| 49 |
4 1 19 26 44 46 13
|
ressasclcl |
|- ( ph -> ( U ` B ) e. ( Base ` P ) ) |
| 50 |
26 16 34 48 49
|
grpcld |
|- ( ph -> ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) |
| 51 |
26 16 34 43 50
|
grpcld |
|- ( ph -> ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) e. ( Base ` P ) ) |
| 52 |
20 51
|
eqeltrid |
|- ( ph -> G e. ( Base ` P ) ) |
| 53 |
20
|
fveq2i |
|- ( coe1 ` G ) = ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) |
| 54 |
53
|
fveq1i |
|- ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) |
| 55 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
| 56 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) ) |
| 57 |
31 43 50 40 56
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) ) |
| 58 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 59 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 60 |
4 15 18 31 40 58 59
|
coe1mon |
|- ( ph -> ( coe1 ` ( 2 ./\ Y ) ) = ( i e. NN0 |-> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) ) ) |
| 61 |
|
simpr |
|- ( ( ph /\ i = 2 ) -> i = 2 ) |
| 62 |
61
|
iftrued |
|- ( ( ph /\ i = 2 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 1r ` K ) ) |
| 63 |
|
fvexd |
|- ( ph -> ( 1r ` K ) e. _V ) |
| 64 |
60 62 40 63
|
fvmptd |
|- ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) = ( 1r ` K ) ) |
| 65 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) ) |
| 66 |
31 48 49 40 65
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) ) |
| 67 |
5
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ V ) |
| 68 |
1 5
|
ressbas2 |
|- ( F C_ V -> F = ( Base ` K ) ) |
| 69 |
10 67 68
|
3syl |
|- ( ph -> F = ( Base ` K ) ) |
| 70 |
12 69
|
eleqtrd |
|- ( ph -> A e. ( Base ` K ) ) |
| 71 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 72 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 73 |
4 26 71 19 17 72
|
coe1sclmulfv |
|- ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) ) |
| 74 |
31 70 42 40 73
|
syl121anc |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) ) |
| 75 |
4 15 31 58 59
|
coe1vr1 |
|- ( ph -> ( coe1 ` Y ) = ( i e. NN0 |-> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) ) ) |
| 76 |
|
1ne2 |
|- 1 =/= 2 |
| 77 |
76
|
nesymi |
|- -. 2 = 1 |
| 78 |
|
eqeq1 |
|- ( i = 2 -> ( i = 1 <-> 2 = 1 ) ) |
| 79 |
77 78
|
mtbiri |
|- ( i = 2 -> -. i = 1 ) |
| 80 |
79
|
adantl |
|- ( ( ph /\ i = 2 ) -> -. i = 1 ) |
| 81 |
80
|
iffalsed |
|- ( ( ph /\ i = 2 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 82 |
|
fvexd |
|- ( ph -> ( 0g ` K ) e. _V ) |
| 83 |
75 81 40 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` Y ) ` 2 ) = ( 0g ` K ) ) |
| 84 |
83
|
oveq2d |
|- ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 2 ) ) = ( A ( .r ` K ) ( 0g ` K ) ) ) |
| 85 |
71 72 58 31 70
|
ringrzd |
|- ( ph -> ( A ( .r ` K ) ( 0g ` K ) ) = ( 0g ` K ) ) |
| 86 |
74 84 85
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) = ( 0g ` K ) ) |
| 87 |
13 69
|
eleqtrd |
|- ( ph -> B e. ( Base ` K ) ) |
| 88 |
4 19 71 58
|
coe1scl |
|- ( ( K e. Ring /\ B e. ( Base ` K ) ) -> ( coe1 ` ( U ` B ) ) = ( i e. NN0 |-> if ( i = 0 , B , ( 0g ` K ) ) ) ) |
| 89 |
31 87 88
|
syl2anc |
|- ( ph -> ( coe1 ` ( U ` B ) ) = ( i e. NN0 |-> if ( i = 0 , B , ( 0g ` K ) ) ) ) |
| 90 |
|
0ne2 |
|- 0 =/= 2 |
| 91 |
90
|
neii |
|- -. 0 = 2 |
| 92 |
|
eqeq1 |
|- ( i = 0 -> ( i = 2 <-> 0 = 2 ) ) |
| 93 |
91 92
|
mtbiri |
|- ( i = 0 -> -. i = 2 ) |
| 94 |
93 61
|
nsyl3 |
|- ( ( ph /\ i = 2 ) -> -. i = 0 ) |
| 95 |
94
|
iffalsed |
|- ( ( ph /\ i = 2 ) -> if ( i = 0 , B , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 96 |
89 95 40 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` ( U ` B ) ) ` 2 ) = ( 0g ` K ) ) |
| 97 |
86 96
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 2 ) ) = ( ( 0g ` K ) ( +g ` K ) ( 0g ` K ) ) ) |
| 98 |
31
|
ringgrpd |
|- ( ph -> K e. Grp ) |
| 99 |
71 58
|
grpidcl |
|- ( K e. Grp -> ( 0g ` K ) e. ( Base ` K ) ) |
| 100 |
98 99
|
syl |
|- ( ph -> ( 0g ` K ) e. ( Base ` K ) ) |
| 101 |
71 55 58 98 100
|
grpridd |
|- ( ph -> ( ( 0g ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 0g ` K ) ) |
| 102 |
66 97 101
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) = ( 0g ` K ) ) |
| 103 |
64 102
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 2 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 2 ) ) = ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) ) |
| 104 |
71 59
|
ringidcl |
|- ( K e. Ring -> ( 1r ` K ) e. ( Base ` K ) ) |
| 105 |
31 104
|
syl |
|- ( ph -> ( 1r ` K ) e. ( Base ` K ) ) |
| 106 |
71 55 58 98 105
|
grpridd |
|- ( ph -> ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 1r ` K ) ) |
| 107 |
44
|
crngringd |
|- ( ph -> E e. Ring ) |
| 108 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 109 |
108
|
subrg1cl |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) e. F ) |
| 110 |
46 109
|
syl |
|- ( ph -> ( 1r ` E ) e. F ) |
| 111 |
10 67
|
syl |
|- ( ph -> F C_ V ) |
| 112 |
1 5 108
|
ress1r |
|- ( ( E e. Ring /\ ( 1r ` E ) e. F /\ F C_ V ) -> ( 1r ` E ) = ( 1r ` K ) ) |
| 113 |
107 110 111 112
|
syl3anc |
|- ( ph -> ( 1r ` E ) = ( 1r ` K ) ) |
| 114 |
106 113
|
eqtr4d |
|- ( ph -> ( ( 1r ` K ) ( +g ` K ) ( 0g ` K ) ) = ( 1r ` E ) ) |
| 115 |
57 103 114
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 2 ) = ( 1r ` E ) ) |
| 116 |
54 115
|
eqtrid |
|- ( ph -> ( ( coe1 ` G ) ` 2 ) = ( 1r ` E ) ) |
| 117 |
9
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 118 |
|
drngnzr |
|- ( E e. DivRing -> E e. NzRing ) |
| 119 |
108 3
|
nzrnz |
|- ( E e. NzRing -> ( 1r ` E ) =/= .0. ) |
| 120 |
117 118 119
|
3syl |
|- ( ph -> ( 1r ` E ) =/= .0. ) |
| 121 |
116 120
|
eqnetrd |
|- ( ph -> ( ( coe1 ` G ) ` 2 ) =/= .0. ) |
| 122 |
|
fveq2 |
|- ( G = ( 0g ` P ) -> ( coe1 ` G ) = ( coe1 ` ( 0g ` P ) ) ) |
| 123 |
122
|
fveq1d |
|- ( G = ( 0g ` P ) -> ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` ( 0g ` P ) ) ` 2 ) ) |
| 124 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 125 |
4 124 58 31 40
|
coe1zfv |
|- ( ph -> ( ( coe1 ` ( 0g ` P ) ) ` 2 ) = ( 0g ` K ) ) |
| 126 |
107
|
ringgrpd |
|- ( ph -> E e. Grp ) |
| 127 |
126
|
grpmndd |
|- ( ph -> E e. Mnd ) |
| 128 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
| 129 |
46 128
|
syl |
|- ( ph -> F e. ( SubGrp ` E ) ) |
| 130 |
3
|
subg0cl |
|- ( F e. ( SubGrp ` E ) -> .0. e. F ) |
| 131 |
129 130
|
syl |
|- ( ph -> .0. e. F ) |
| 132 |
1 5 3
|
ress0g |
|- ( ( E e. Mnd /\ .0. e. F /\ F C_ V ) -> .0. = ( 0g ` K ) ) |
| 133 |
127 131 111 132
|
syl3anc |
|- ( ph -> .0. = ( 0g ` K ) ) |
| 134 |
125 133
|
eqtr4d |
|- ( ph -> ( ( coe1 ` ( 0g ` P ) ) ` 2 ) = .0. ) |
| 135 |
123 134
|
sylan9eqr |
|- ( ( ph /\ G = ( 0g ` P ) ) -> ( ( coe1 ` G ) ` 2 ) = .0. ) |
| 136 |
121 135
|
mteqand |
|- ( ph -> G =/= ( 0g ` P ) ) |
| 137 |
20
|
fveq2i |
|- ( ( deg1 ` K ) ` G ) = ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) |
| 138 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
| 139 |
|
2re |
|- 2 e. RR |
| 140 |
139
|
rexri |
|- 2 e. RR* |
| 141 |
140
|
a1i |
|- ( ph -> 2 e. RR* ) |
| 142 |
138 4 26
|
deg1xrcl |
|- ( ( ( U ` A ) .(x) Y ) e. ( Base ` P ) -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) e. RR* ) |
| 143 |
48 142
|
syl |
|- ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) e. RR* ) |
| 144 |
|
1xr |
|- 1 e. RR* |
| 145 |
144
|
a1i |
|- ( ph -> 1 e. RR* ) |
| 146 |
138 4 71 26 17 19
|
deg1mul3le |
|- ( ( K e. Ring /\ A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ ( ( deg1 ` K ) ` Y ) ) |
| 147 |
31 70 42 146
|
syl3anc |
|- ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ ( ( deg1 ` K ) ` Y ) ) |
| 148 |
1 28
|
eqeltrid |
|- ( ph -> K e. Field ) |
| 149 |
148
|
flddrngd |
|- ( ph -> K e. DivRing ) |
| 150 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
| 151 |
149 150
|
syl |
|- ( ph -> K e. NzRing ) |
| 152 |
138 4 15 151
|
deg1vr |
|- ( ph -> ( ( deg1 ` K ) ` Y ) = 1 ) |
| 153 |
147 152
|
breqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) <_ 1 ) |
| 154 |
|
1lt2 |
|- 1 < 2 |
| 155 |
154
|
a1i |
|- ( ph -> 1 < 2 ) |
| 156 |
143 145 141 153 155
|
xrlelttrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( U ` A ) .(x) Y ) ) < 2 ) |
| 157 |
138 4 26
|
deg1xrcl |
|- ( ( U ` B ) e. ( Base ` P ) -> ( ( deg1 ` K ) ` ( U ` B ) ) e. RR* ) |
| 158 |
49 157
|
syl |
|- ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) e. RR* ) |
| 159 |
|
0xr |
|- 0 e. RR* |
| 160 |
159
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 161 |
138 4 71 19
|
deg1sclle |
|- ( ( K e. Ring /\ B e. ( Base ` K ) ) -> ( ( deg1 ` K ) ` ( U ` B ) ) <_ 0 ) |
| 162 |
31 87 161
|
syl2anc |
|- ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) <_ 0 ) |
| 163 |
|
2pos |
|- 0 < 2 |
| 164 |
163
|
a1i |
|- ( ph -> 0 < 2 ) |
| 165 |
158 160 141 162 164
|
xrlelttrd |
|- ( ph -> ( ( deg1 ` K ) ` ( U ` B ) ) < 2 ) |
| 166 |
4 138 31 26 16 48 49 141 156 165
|
deg1addlt |
|- ( ph -> ( ( deg1 ` K ) ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) < 2 ) |
| 167 |
138 4 15 35 18
|
deg1pw |
|- ( ( K e. NzRing /\ 2 e. NN0 ) -> ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) = 2 ) |
| 168 |
151 40 167
|
syl2anc |
|- ( ph -> ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) = 2 ) |
| 169 |
166 168
|
breqtrrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) < ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) ) |
| 170 |
4 138 31 26 16 43 50 169
|
deg1add |
|- ( ph -> ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) = ( ( deg1 ` K ) ` ( 2 ./\ Y ) ) ) |
| 171 |
170 168
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) = 2 ) |
| 172 |
137 171
|
eqtrid |
|- ( ph -> ( ( deg1 ` K ) ` G ) = 2 ) |
| 173 |
172
|
fveq2d |
|- ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( ( coe1 ` G ) ` 2 ) ) |
| 174 |
173 116 113
|
3eqtrd |
|- ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( 1r ` K ) ) |
| 175 |
|
eqid |
|- ( Monic1p ` K ) = ( Monic1p ` K ) |
| 176 |
4 26 124 138 175 59
|
ismon1p |
|- ( G e. ( Monic1p ` K ) <-> ( G e. ( Base ` P ) /\ G =/= ( 0g ` P ) /\ ( ( coe1 ` G ) ` ( ( deg1 ` K ) ` G ) ) = ( 1r ` K ) ) ) |
| 177 |
52 136 174 176
|
syl3anbrc |
|- ( ph -> G e. ( Monic1p ` K ) ) |
| 178 |
|
eqid |
|- ( E evalSub1 F ) = ( E evalSub1 F ) |
| 179 |
|
eqid |
|- ( eval1 ` E ) = ( eval1 ` E ) |
| 180 |
178 5 4 1 26 179 44 46
|
ressply1evl |
|- ( ph -> ( E evalSub1 F ) = ( ( eval1 ` E ) |` ( Base ` P ) ) ) |
| 181 |
180
|
fveq1d |
|- ( ph -> ( ( E evalSub1 F ) ` G ) = ( ( ( eval1 ` E ) |` ( Base ` P ) ) ` G ) ) |
| 182 |
52
|
fvresd |
|- ( ph -> ( ( ( eval1 ` E ) |` ( Base ` P ) ) ` G ) = ( ( eval1 ` E ) ` G ) ) |
| 183 |
181 182
|
eqtrd |
|- ( ph -> ( ( E evalSub1 F ) ` G ) = ( ( eval1 ` E ) ` G ) ) |
| 184 |
183
|
fveq1d |
|- ( ph -> ( ( ( E evalSub1 F ) ` G ) ` X ) = ( ( ( eval1 ` E ) ` G ) ` X ) ) |
| 185 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
| 186 |
|
eqid |
|- ( Base ` ( Poly1 ` E ) ) = ( Base ` ( Poly1 ` E ) ) |
| 187 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 188 |
|
eqid |
|- ( ( coe1 ` G ) ` 2 ) = ( ( coe1 ` G ) ` 2 ) |
| 189 |
|
eqid |
|- ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` G ) ` 1 ) |
| 190 |
|
eqid |
|- ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` G ) ` 0 ) |
| 191 |
|
eqid |
|- ( PwSer1 ` K ) = ( PwSer1 ` K ) |
| 192 |
|
eqid |
|- ( Base ` ( PwSer1 ` K ) ) = ( Base ` ( PwSer1 ` K ) ) |
| 193 |
185 1 4 26 46 191 192 186
|
ressply1bas2 |
|- ( ph -> ( Base ` P ) = ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) |
| 194 |
52 193
|
eleqtrd |
|- ( ph -> G e. ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) |
| 195 |
194
|
elin2d |
|- ( ph -> G e. ( Base ` ( Poly1 ` E ) ) ) |
| 196 |
1 21 4 26 52 46
|
ressdeg1 |
|- ( ph -> ( ( deg1 ` E ) ` G ) = ( ( deg1 ` K ) ` G ) ) |
| 197 |
196 172
|
eqtrd |
|- ( ph -> ( ( deg1 ` E ) ` G ) = 2 ) |
| 198 |
185 179 5 186 6 7 8 187 21 188 189 190 44 195 197 11
|
evl1deg2 |
|- ( ph -> ( ( ( eval1 ` E ) ` G ) ` X ) = ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) ) |
| 199 |
116
|
oveq1d |
|- ( ph -> ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) = ( ( 1r ` E ) .x. ( 2 .^ X ) ) ) |
| 200 |
|
eqid |
|- ( mulGrp ` E ) = ( mulGrp ` E ) |
| 201 |
200 5
|
mgpbas |
|- V = ( Base ` ( mulGrp ` E ) ) |
| 202 |
200
|
ringmgp |
|- ( E e. Ring -> ( mulGrp ` E ) e. Mnd ) |
| 203 |
107 202
|
syl |
|- ( ph -> ( mulGrp ` E ) e. Mnd ) |
| 204 |
201 8 203 40 11
|
mulgnn0cld |
|- ( ph -> ( 2 .^ X ) e. V ) |
| 205 |
5 6 108 107 204
|
ringlidmd |
|- ( ph -> ( ( 1r ` E ) .x. ( 2 .^ X ) ) = ( 2 .^ X ) ) |
| 206 |
199 205
|
eqtrd |
|- ( ph -> ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) = ( 2 .^ X ) ) |
| 207 |
53
|
fveq1i |
|- ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) |
| 208 |
|
1nn0 |
|- 1 e. NN0 |
| 209 |
208
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 210 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) ) |
| 211 |
31 43 50 209 210
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) ) |
| 212 |
76
|
neii |
|- -. 1 = 2 |
| 213 |
|
eqeq1 |
|- ( i = 1 -> ( i = 2 <-> 1 = 2 ) ) |
| 214 |
213
|
notbid |
|- ( i = 1 -> ( -. i = 2 <-> -. 1 = 2 ) ) |
| 215 |
214
|
adantl |
|- ( ( ph /\ i = 1 ) -> ( -. i = 2 <-> -. 1 = 2 ) ) |
| 216 |
212 215
|
mpbiri |
|- ( ( ph /\ i = 1 ) -> -. i = 2 ) |
| 217 |
216
|
iffalsed |
|- ( ( ph /\ i = 1 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 218 |
60 217 209 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) = ( 0g ` K ) ) |
| 219 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) ) |
| 220 |
31 48 49 209 219
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) ) |
| 221 |
4 26 71 19 17 72
|
coe1sclmulfv |
|- ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) ) |
| 222 |
31 70 42 209 221
|
syl121anc |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) ) |
| 223 |
|
simpr |
|- ( ( ph /\ i = 1 ) -> i = 1 ) |
| 224 |
223
|
iftrued |
|- ( ( ph /\ i = 1 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 1r ` K ) ) |
| 225 |
75 224 209 63
|
fvmptd |
|- ( ph -> ( ( coe1 ` Y ) ` 1 ) = ( 1r ` K ) ) |
| 226 |
225
|
oveq2d |
|- ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 1 ) ) = ( A ( .r ` K ) ( 1r ` K ) ) ) |
| 227 |
71 72 59 31 70
|
ringridmd |
|- ( ph -> ( A ( .r ` K ) ( 1r ` K ) ) = A ) |
| 228 |
222 226 227
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) = A ) |
| 229 |
|
0ne1 |
|- 0 =/= 1 |
| 230 |
229
|
nesymi |
|- -. 1 = 0 |
| 231 |
|
eqeq1 |
|- ( i = 1 -> ( i = 0 <-> 1 = 0 ) ) |
| 232 |
230 231
|
mtbiri |
|- ( i = 1 -> -. i = 0 ) |
| 233 |
232
|
adantl |
|- ( ( ph /\ i = 1 ) -> -. i = 0 ) |
| 234 |
233
|
iffalsed |
|- ( ( ph /\ i = 1 ) -> if ( i = 0 , B , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 235 |
89 234 209 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` ( U ` B ) ) ` 1 ) = ( 0g ` K ) ) |
| 236 |
228 235
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 1 ) ) = ( A ( +g ` K ) ( 0g ` K ) ) ) |
| 237 |
71 55 58 98 70
|
grpridd |
|- ( ph -> ( A ( +g ` K ) ( 0g ` K ) ) = A ) |
| 238 |
220 236 237
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) = A ) |
| 239 |
218 238
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 1 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 1 ) ) = ( ( 0g ` K ) ( +g ` K ) A ) ) |
| 240 |
71 55 58 98 70
|
grplidd |
|- ( ph -> ( ( 0g ` K ) ( +g ` K ) A ) = A ) |
| 241 |
211 239 240
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 1 ) = A ) |
| 242 |
207 241
|
eqtrid |
|- ( ph -> ( ( coe1 ` G ) ` 1 ) = A ) |
| 243 |
242
|
oveq1d |
|- ( ph -> ( ( ( coe1 ` G ) ` 1 ) .x. X ) = ( A .x. X ) ) |
| 244 |
53
|
fveq1i |
|- ( ( coe1 ` G ) ` 0 ) = ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) |
| 245 |
|
0nn0 |
|- 0 e. NN0 |
| 246 |
245
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 247 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( 2 ./\ Y ) e. ( Base ` P ) /\ ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) ) |
| 248 |
31 43 50 246 247
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) ) |
| 249 |
93
|
adantl |
|- ( ( ph /\ i = 0 ) -> -. i = 2 ) |
| 250 |
249
|
iffalsed |
|- ( ( ph /\ i = 0 ) -> if ( i = 2 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 251 |
60 250 246 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) = ( 0g ` K ) ) |
| 252 |
4 26 16 55
|
coe1addfv |
|- ( ( ( K e. Ring /\ ( ( U ` A ) .(x) Y ) e. ( Base ` P ) /\ ( U ` B ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) ) |
| 253 |
31 48 49 246 252
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) ) |
| 254 |
4 26 71 19 17 72
|
coe1sclmulfv |
|- ( ( K e. Ring /\ ( A e. ( Base ` K ) /\ Y e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) ) |
| 255 |
31 70 42 246 254
|
syl121anc |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) ) |
| 256 |
229
|
neii |
|- -. 0 = 1 |
| 257 |
|
eqeq1 |
|- ( i = 0 -> ( i = 1 <-> 0 = 1 ) ) |
| 258 |
256 257
|
mtbiri |
|- ( i = 0 -> -. i = 1 ) |
| 259 |
258
|
adantl |
|- ( ( ph /\ i = 0 ) -> -. i = 1 ) |
| 260 |
259
|
iffalsed |
|- ( ( ph /\ i = 0 ) -> if ( i = 1 , ( 1r ` K ) , ( 0g ` K ) ) = ( 0g ` K ) ) |
| 261 |
75 260 246 82
|
fvmptd |
|- ( ph -> ( ( coe1 ` Y ) ` 0 ) = ( 0g ` K ) ) |
| 262 |
261
|
oveq2d |
|- ( ph -> ( A ( .r ` K ) ( ( coe1 ` Y ) ` 0 ) ) = ( A ( .r ` K ) ( 0g ` K ) ) ) |
| 263 |
255 262 85
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) = ( 0g ` K ) ) |
| 264 |
4 19 71
|
ply1sclid |
|- ( ( K e. Ring /\ B e. ( Base ` K ) ) -> B = ( ( coe1 ` ( U ` B ) ) ` 0 ) ) |
| 265 |
31 87 264
|
syl2anc |
|- ( ph -> B = ( ( coe1 ` ( U ` B ) ) ` 0 ) ) |
| 266 |
265
|
eqcomd |
|- ( ph -> ( ( coe1 ` ( U ` B ) ) ` 0 ) = B ) |
| 267 |
263 266
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( ( U ` A ) .(x) Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( U ` B ) ) ` 0 ) ) = ( ( 0g ` K ) ( +g ` K ) B ) ) |
| 268 |
71 55 58 98 87
|
grplidd |
|- ( ph -> ( ( 0g ` K ) ( +g ` K ) B ) = B ) |
| 269 |
253 267 268
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) = B ) |
| 270 |
251 269
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` ( 2 ./\ Y ) ) ` 0 ) ( +g ` K ) ( ( coe1 ` ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ` 0 ) ) = ( ( 0g ` K ) ( +g ` K ) B ) ) |
| 271 |
248 270 268
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( ( 2 ./\ Y ) .(+) ( ( ( U ` A ) .(x) Y ) .(+) ( U ` B ) ) ) ) ` 0 ) = B ) |
| 272 |
244 271
|
eqtrid |
|- ( ph -> ( ( coe1 ` G ) ` 0 ) = B ) |
| 273 |
243 272
|
oveq12d |
|- ( ph -> ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) = ( ( A .x. X ) .+ B ) ) |
| 274 |
206 273
|
oveq12d |
|- ( ph -> ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) = ( ( 2 .^ X ) .+ ( ( A .x. X ) .+ B ) ) ) |
| 275 |
274 14
|
eqtrd |
|- ( ph -> ( ( ( ( coe1 ` G ) ` 2 ) .x. ( 2 .^ X ) ) .+ ( ( ( ( coe1 ` G ) ` 1 ) .x. X ) .+ ( ( coe1 ` G ) ` 0 ) ) ) = .0. ) |
| 276 |
184 198 275
|
3eqtrd |
|- ( ph -> ( ( ( E evalSub1 F ) ` G ) ` X ) = .0. ) |
| 277 |
25 177 276
|
rspcedvdw |
|- ( ph -> E. p e. ( Monic1p ` K ) ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. ) |
| 278 |
178 1 5 3 44 46
|
elirng |
|- ( ph -> ( X e. ( E IntgRing F ) <-> ( X e. V /\ E. p e. ( Monic1p ` K ) ( ( ( E evalSub1 F ) ` p ) ` X ) = .0. ) ) ) |
| 279 |
11 277 278
|
mpbir2and |
|- ( ph -> X e. ( E IntgRing F ) ) |
| 280 |
1 2 21 22 9 10 279
|
algextdeg |
|- ( ph -> ( L [:] K ) = ( ( deg1 ` E ) ` ( ( E minPoly F ) ` X ) ) ) |
| 281 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
| 282 |
4 281
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
| 283 |
|
eqid |
|- { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` X ) = .0. } = { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` X ) = .0. } |
| 284 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
| 285 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
| 286 |
178 282 5 9 10 11 3 283 284 285 22
|
minplycl |
|- ( ph -> ( ( E minPoly F ) ` X ) e. ( Base ` P ) ) |
| 287 |
1 21 4 26 286 46
|
ressdeg1 |
|- ( ph -> ( ( deg1 ` E ) ` ( ( E minPoly F ) ` X ) ) = ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) ) |
| 288 |
280 287
|
eqtrd |
|- ( ph -> ( L [:] K ) = ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) ) |
| 289 |
1
|
fveq2i |
|- ( deg1 ` K ) = ( deg1 ` ( E |`s F ) ) |
| 290 |
178 282 5 9 10 11 3 22 289 124 26 276 52 136
|
minplymindeg |
|- ( ph -> ( ( deg1 ` K ) ` ( ( E minPoly F ) ` X ) ) <_ ( ( deg1 ` K ) ` G ) ) |
| 291 |
288 290
|
eqbrtrd |
|- ( ph -> ( L [:] K ) <_ ( ( deg1 ` K ) ` G ) ) |
| 292 |
291 172
|
breqtrd |
|- ( ph -> ( L [:] K ) <_ 2 ) |