Step |
Hyp |
Ref |
Expression |
1 |
|
evl1deg1.1 |
|- P = ( Poly1 ` R ) |
2 |
|
evl1deg1.2 |
|- O = ( eval1 ` R ) |
3 |
|
evl1deg1.3 |
|- K = ( Base ` R ) |
4 |
|
evl1deg1.4 |
|- U = ( Base ` P ) |
5 |
|
evl1deg1.5 |
|- .x. = ( .r ` R ) |
6 |
|
evl1deg1.6 |
|- .+ = ( +g ` R ) |
7 |
|
evl1deg2.p |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
8 |
|
evl1deg2.f |
|- F = ( coe1 ` M ) |
9 |
|
evl1deg2.e |
|- E = ( deg1 ` R ) |
10 |
|
evl1deg2.a |
|- A = ( F ` 2 ) |
11 |
|
evl1deg2.b |
|- B = ( F ` 1 ) |
12 |
|
evl1deg2.c |
|- C = ( F ` 0 ) |
13 |
|
evl1deg2.r |
|- ( ph -> R e. CRing ) |
14 |
|
evl1deg2.m |
|- ( ph -> M e. U ) |
15 |
|
evl1deg2.1 |
|- ( ph -> ( E ` M ) = 2 ) |
16 |
|
evl1deg2.x |
|- ( ph -> X e. K ) |
17 |
|
oveq2 |
|- ( x = X -> ( k .^ x ) = ( k .^ X ) ) |
18 |
17
|
oveq2d |
|- ( x = X -> ( ( F ` k ) .x. ( k .^ x ) ) = ( ( F ` k ) .x. ( k .^ X ) ) ) |
19 |
18
|
mpteq2dv |
|- ( x = X -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) = ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) |
20 |
19
|
oveq2d |
|- ( x = X -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
21 |
2 1 3 4 13 14 5 7 8
|
evl1fpws |
|- ( ph -> ( O ` M ) = ( x e. K |-> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) ) ) |
22 |
|
ovexd |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) e. _V ) |
23 |
20 21 16 22
|
fvmptd4 |
|- ( ph -> ( ( O ` M ) ` X ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
24 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
25 |
13
|
crngringd |
|- ( ph -> R e. Ring ) |
26 |
25
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
27 |
|
nn0ex |
|- NN0 e. _V |
28 |
27
|
a1i |
|- ( ph -> NN0 e. _V ) |
29 |
25
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. Ring ) |
30 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ k e. NN0 ) -> ( F ` k ) e. K ) |
31 |
14 30
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. K ) |
32 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
33 |
32 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
34 |
32
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
35 |
25 34
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
36 |
35
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` R ) e. Mnd ) |
37 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
38 |
16
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. K ) |
39 |
33 7 36 37 38
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. K ) |
40 |
3 5 29 31 39
|
ringcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
41 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
42 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
43 |
|
oveq1 |
|- ( k = j -> ( k .^ X ) = ( j .^ X ) ) |
44 |
42 43
|
oveq12d |
|- ( k = j -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( F ` j ) .x. ( j .^ X ) ) ) |
45 |
|
breq1 |
|- ( i = ( E ` M ) -> ( i < j <-> ( E ` M ) < j ) ) |
46 |
45
|
imbi1d |
|- ( i = ( E ` M ) -> ( ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
47 |
46
|
ralbidv |
|- ( i = ( E ` M ) -> ( A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
48 |
|
2nn0 |
|- 2 e. NN0 |
49 |
48
|
a1i |
|- ( ph -> 2 e. NN0 ) |
50 |
15 49
|
eqeltrd |
|- ( ph -> ( E ` M ) e. NN0 ) |
51 |
14
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> M e. U ) |
52 |
|
simplr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> j e. NN0 ) |
53 |
|
simpr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( E ` M ) < j ) |
54 |
9 1 4 24 8
|
deg1lt |
|- ( ( M e. U /\ j e. NN0 /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
55 |
51 52 53 54
|
syl3anc |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
56 |
55
|
oveq1d |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( ( 0g ` R ) .x. ( j .^ X ) ) ) |
57 |
25
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> R e. Ring ) |
58 |
57 34
|
syl |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( mulGrp ` R ) e. Mnd ) |
59 |
16
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> X e. K ) |
60 |
33 7 58 52 59
|
mulgnn0cld |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( j .^ X ) e. K ) |
61 |
3 5 24 57 60
|
ringlzd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( 0g ` R ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
62 |
56 61
|
eqtrd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
63 |
62
|
ex |
|- ( ( ph /\ j e. NN0 ) -> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
64 |
63
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
65 |
47 50 64
|
rspcedvdw |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
66 |
41 40 44 65
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` R ) ) |
67 |
|
fzouzdisj |
|- ( ( 0 ..^ 3 ) i^i ( ZZ>= ` 3 ) ) = (/) |
68 |
67
|
a1i |
|- ( ph -> ( ( 0 ..^ 3 ) i^i ( ZZ>= ` 3 ) ) = (/) ) |
69 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
70 |
|
3nn0 |
|- 3 e. NN0 |
71 |
70 69
|
eleqtri |
|- 3 e. ( ZZ>= ` 0 ) |
72 |
|
fzouzsplit |
|- ( 3 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) ) |
73 |
71 72
|
ax-mp |
|- ( ZZ>= ` 0 ) = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) |
74 |
69 73
|
eqtri |
|- NN0 = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) |
75 |
74
|
a1i |
|- ( ph -> NN0 = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) ) |
76 |
3 24 6 26 28 40 66 68 75
|
gsumsplit2 |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) ) |
77 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
78 |
77
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
79 |
78
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) = ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) |
80 |
79
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
81 |
14
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> M e. U ) |
82 |
|
uzss |
|- ( 3 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) ) |
83 |
71 82
|
ax-mp |
|- ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) |
84 |
83 69
|
sseqtrri |
|- ( ZZ>= ` 3 ) C_ NN0 |
85 |
84
|
a1i |
|- ( ph -> ( ZZ>= ` 3 ) C_ NN0 ) |
86 |
85
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> k e. NN0 ) |
87 |
15
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( E ` M ) = 2 ) |
88 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
89 |
88
|
fveq2i |
|- ( ZZ>= ` ( 2 + 1 ) ) = ( ZZ>= ` 3 ) |
90 |
89
|
eleq2i |
|- ( k e. ( ZZ>= ` ( 2 + 1 ) ) <-> k e. ( ZZ>= ` 3 ) ) |
91 |
|
2z |
|- 2 e. ZZ |
92 |
|
eluzp1l |
|- ( ( 2 e. ZZ /\ k e. ( ZZ>= ` ( 2 + 1 ) ) ) -> 2 < k ) |
93 |
91 92
|
mpan |
|- ( k e. ( ZZ>= ` ( 2 + 1 ) ) -> 2 < k ) |
94 |
90 93
|
sylbir |
|- ( k e. ( ZZ>= ` 3 ) -> 2 < k ) |
95 |
94
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> 2 < k ) |
96 |
87 95
|
eqbrtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( E ` M ) < k ) |
97 |
9 1 4 24 8
|
deg1lt |
|- ( ( M e. U /\ k e. NN0 /\ ( E ` M ) < k ) -> ( F ` k ) = ( 0g ` R ) ) |
98 |
81 86 96 97
|
syl3anc |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( F ` k ) = ( 0g ` R ) ) |
99 |
98
|
oveq1d |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( 0g ` R ) .x. ( k .^ X ) ) ) |
100 |
25
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> R e. Ring ) |
101 |
100 34
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( mulGrp ` R ) e. Mnd ) |
102 |
16
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> X e. K ) |
103 |
33 7 101 86 102
|
mulgnn0cld |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( k .^ X ) e. K ) |
104 |
3 5 24 100 103
|
ringlzd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( 0g ` R ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
105 |
99 104
|
eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
106 |
105
|
mpteq2dva |
|- ( ph -> ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) = ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) |
107 |
106
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) ) |
108 |
13
|
crnggrpd |
|- ( ph -> R e. Grp ) |
109 |
108
|
grpmndd |
|- ( ph -> R e. Mnd ) |
110 |
|
fvexd |
|- ( ph -> ( ZZ>= ` 3 ) e. _V ) |
111 |
24
|
gsumz |
|- ( ( R e. Mnd /\ ( ZZ>= ` 3 ) e. _V ) -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
112 |
109 110 111
|
syl2anc |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
113 |
107 112
|
eqtrd |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( 0g ` R ) ) |
114 |
80 113
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( 0g ` R ) ) ) |
115 |
|
tpex |
|- { 0 , 1 , 2 } e. _V |
116 |
115
|
a1i |
|- ( ph -> { 0 , 1 , 2 } e. _V ) |
117 |
25
|
adantr |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> R e. Ring ) |
118 |
8 4 1 3
|
coe1f |
|- ( M e. U -> F : NN0 --> K ) |
119 |
14 118
|
syl |
|- ( ph -> F : NN0 --> K ) |
120 |
119
|
adantr |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> F : NN0 --> K ) |
121 |
|
fzo0ssnn0 |
|- ( 0 ..^ 3 ) C_ NN0 |
122 |
78 121
|
eqsstrrdi |
|- ( ph -> { 0 , 1 , 2 } C_ NN0 ) |
123 |
122
|
sselda |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> k e. NN0 ) |
124 |
120 123
|
ffvelcdmd |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( F ` k ) e. K ) |
125 |
123 39
|
syldan |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( k .^ X ) e. K ) |
126 |
3 5 117 124 125
|
ringcld |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
127 |
126
|
fmpttd |
|- ( ph -> ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) : { 0 , 1 , 2 } --> K ) |
128 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
129 |
78 128
|
eqeltrrdi |
|- ( ph -> { 0 , 1 , 2 } e. Fin ) |
130 |
127 129 41
|
fidmfisupp |
|- ( ph -> ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` R ) ) |
131 |
3 24 26 116 127 130
|
gsumcl |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) e. K ) |
132 |
3 6 24 108 131
|
grpridd |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( 0g ` R ) ) = ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
133 |
|
fveq2 |
|- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
134 |
133 12
|
eqtr4di |
|- ( k = 0 -> ( F ` k ) = C ) |
135 |
|
oveq1 |
|- ( k = 0 -> ( k .^ X ) = ( 0 .^ X ) ) |
136 |
134 135
|
oveq12d |
|- ( k = 0 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( C .x. ( 0 .^ X ) ) ) |
137 |
|
fveq2 |
|- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
138 |
137 11
|
eqtr4di |
|- ( k = 1 -> ( F ` k ) = B ) |
139 |
|
oveq1 |
|- ( k = 1 -> ( k .^ X ) = ( 1 .^ X ) ) |
140 |
138 139
|
oveq12d |
|- ( k = 1 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( B .x. ( 1 .^ X ) ) ) |
141 |
|
fveq2 |
|- ( k = 2 -> ( F ` k ) = ( F ` 2 ) ) |
142 |
141 10
|
eqtr4di |
|- ( k = 2 -> ( F ` k ) = A ) |
143 |
|
oveq1 |
|- ( k = 2 -> ( k .^ X ) = ( 2 .^ X ) ) |
144 |
142 143
|
oveq12d |
|- ( k = 2 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( A .x. ( 2 .^ X ) ) ) |
145 |
|
0nn0 |
|- 0 e. NN0 |
146 |
145
|
a1i |
|- ( ph -> 0 e. NN0 ) |
147 |
|
1nn0 |
|- 1 e. NN0 |
148 |
147
|
a1i |
|- ( ph -> 1 e. NN0 ) |
149 |
|
0ne1 |
|- 0 =/= 1 |
150 |
149
|
a1i |
|- ( ph -> 0 =/= 1 ) |
151 |
|
1ne2 |
|- 1 =/= 2 |
152 |
151
|
a1i |
|- ( ph -> 1 =/= 2 ) |
153 |
|
0ne2 |
|- 0 =/= 2 |
154 |
153
|
a1i |
|- ( ph -> 0 =/= 2 ) |
155 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 0 e. NN0 ) -> ( F ` 0 ) e. K ) |
156 |
14 145 155
|
sylancl |
|- ( ph -> ( F ` 0 ) e. K ) |
157 |
12 156
|
eqeltrid |
|- ( ph -> C e. K ) |
158 |
33 7 35 146 16
|
mulgnn0cld |
|- ( ph -> ( 0 .^ X ) e. K ) |
159 |
3 5 25 157 158
|
ringcld |
|- ( ph -> ( C .x. ( 0 .^ X ) ) e. K ) |
160 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 1 e. NN0 ) -> ( F ` 1 ) e. K ) |
161 |
14 147 160
|
sylancl |
|- ( ph -> ( F ` 1 ) e. K ) |
162 |
11 161
|
eqeltrid |
|- ( ph -> B e. K ) |
163 |
33 7 35 148 16
|
mulgnn0cld |
|- ( ph -> ( 1 .^ X ) e. K ) |
164 |
3 5 25 162 163
|
ringcld |
|- ( ph -> ( B .x. ( 1 .^ X ) ) e. K ) |
165 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 2 e. NN0 ) -> ( F ` 2 ) e. K ) |
166 |
14 48 165
|
sylancl |
|- ( ph -> ( F ` 2 ) e. K ) |
167 |
10 166
|
eqeltrid |
|- ( ph -> A e. K ) |
168 |
33 7 35 49 16
|
mulgnn0cld |
|- ( ph -> ( 2 .^ X ) e. K ) |
169 |
3 5 25 167 168
|
ringcld |
|- ( ph -> ( A .x. ( 2 .^ X ) ) e. K ) |
170 |
3 6 136 140 144 26 146 148 49 150 152 154 159 164 169
|
gsumtp |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) ) |
171 |
3 6 108 159 164
|
grpcld |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) e. K ) |
172 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) e. K /\ ( A .x. ( 2 .^ X ) ) e. K ) -> ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) ) |
173 |
26 171 169 172
|
syl3anc |
|- ( ph -> ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) ) |
174 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( C .x. ( 0 .^ X ) ) e. K /\ ( B .x. ( 1 .^ X ) ) e. K ) -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) ) |
175 |
26 159 164 174
|
syl3anc |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) ) |
176 |
33 7
|
mulg1 |
|- ( X e. K -> ( 1 .^ X ) = X ) |
177 |
16 176
|
syl |
|- ( ph -> ( 1 .^ X ) = X ) |
178 |
177
|
oveq2d |
|- ( ph -> ( B .x. ( 1 .^ X ) ) = ( B .x. X ) ) |
179 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
180 |
32 179
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
181 |
33 180 7
|
mulg0 |
|- ( X e. K -> ( 0 .^ X ) = ( 1r ` R ) ) |
182 |
16 181
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
183 |
182
|
oveq2d |
|- ( ph -> ( C .x. ( 0 .^ X ) ) = ( C .x. ( 1r ` R ) ) ) |
184 |
3 5 179 25 157
|
ringridmd |
|- ( ph -> ( C .x. ( 1r ` R ) ) = C ) |
185 |
183 184
|
eqtrd |
|- ( ph -> ( C .x. ( 0 .^ X ) ) = C ) |
186 |
178 185
|
oveq12d |
|- ( ph -> ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) = ( ( B .x. X ) .+ C ) ) |
187 |
175 186
|
eqtrd |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. X ) .+ C ) ) |
188 |
187
|
oveq2d |
|- ( ph -> ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
189 |
170 173 188
|
3eqtrd |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
190 |
114 132 189
|
3eqtrd |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
191 |
23 76 190
|
3eqtrd |
|- ( ph -> ( ( O ` M ) ` X ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |