| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1deg1.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
evl1deg1.2 |
|- O = ( eval1 ` R ) |
| 3 |
|
evl1deg1.3 |
|- K = ( Base ` R ) |
| 4 |
|
evl1deg1.4 |
|- U = ( Base ` P ) |
| 5 |
|
evl1deg1.5 |
|- .x. = ( .r ` R ) |
| 6 |
|
evl1deg1.6 |
|- .+ = ( +g ` R ) |
| 7 |
|
evl1deg2.p |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 8 |
|
evl1deg2.f |
|- F = ( coe1 ` M ) |
| 9 |
|
evl1deg2.e |
|- E = ( deg1 ` R ) |
| 10 |
|
evl1deg2.a |
|- A = ( F ` 2 ) |
| 11 |
|
evl1deg2.b |
|- B = ( F ` 1 ) |
| 12 |
|
evl1deg2.c |
|- C = ( F ` 0 ) |
| 13 |
|
evl1deg2.r |
|- ( ph -> R e. CRing ) |
| 14 |
|
evl1deg2.m |
|- ( ph -> M e. U ) |
| 15 |
|
evl1deg2.1 |
|- ( ph -> ( E ` M ) = 2 ) |
| 16 |
|
evl1deg2.x |
|- ( ph -> X e. K ) |
| 17 |
|
oveq2 |
|- ( x = X -> ( k .^ x ) = ( k .^ X ) ) |
| 18 |
17
|
oveq2d |
|- ( x = X -> ( ( F ` k ) .x. ( k .^ x ) ) = ( ( F ` k ) .x. ( k .^ X ) ) ) |
| 19 |
18
|
mpteq2dv |
|- ( x = X -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) = ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) |
| 20 |
19
|
oveq2d |
|- ( x = X -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 21 |
2 1 3 4 13 14 5 7 8
|
evl1fpws |
|- ( ph -> ( O ` M ) = ( x e. K |-> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 22 |
|
ovexd |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) e. _V ) |
| 23 |
20 21 16 22
|
fvmptd4 |
|- ( ph -> ( ( O ` M ) ` X ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 24 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 25 |
13
|
crngringd |
|- ( ph -> R e. Ring ) |
| 26 |
25
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 27 |
|
nn0ex |
|- NN0 e. _V |
| 28 |
27
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 29 |
25
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. Ring ) |
| 30 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ k e. NN0 ) -> ( F ` k ) e. K ) |
| 31 |
14 30
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. K ) |
| 32 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 33 |
32 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
| 34 |
32
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 35 |
25 34
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` R ) e. Mnd ) |
| 37 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 38 |
16
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. K ) |
| 39 |
33 7 36 37 38
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. K ) |
| 40 |
3 5 29 31 39
|
ringcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
| 41 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 42 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 43 |
|
oveq1 |
|- ( k = j -> ( k .^ X ) = ( j .^ X ) ) |
| 44 |
42 43
|
oveq12d |
|- ( k = j -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( F ` j ) .x. ( j .^ X ) ) ) |
| 45 |
|
breq1 |
|- ( i = ( E ` M ) -> ( i < j <-> ( E ` M ) < j ) ) |
| 46 |
45
|
imbi1d |
|- ( i = ( E ` M ) -> ( ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
| 47 |
46
|
ralbidv |
|- ( i = ( E ` M ) -> ( A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
| 48 |
|
2nn0 |
|- 2 e. NN0 |
| 49 |
48
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 50 |
15 49
|
eqeltrd |
|- ( ph -> ( E ` M ) e. NN0 ) |
| 51 |
14
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> M e. U ) |
| 52 |
|
simplr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> j e. NN0 ) |
| 53 |
|
simpr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( E ` M ) < j ) |
| 54 |
9 1 4 24 8
|
deg1lt |
|- ( ( M e. U /\ j e. NN0 /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
| 55 |
51 52 53 54
|
syl3anc |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
| 56 |
55
|
oveq1d |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( ( 0g ` R ) .x. ( j .^ X ) ) ) |
| 57 |
25
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> R e. Ring ) |
| 58 |
57 34
|
syl |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( mulGrp ` R ) e. Mnd ) |
| 59 |
16
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> X e. K ) |
| 60 |
33 7 58 52 59
|
mulgnn0cld |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( j .^ X ) e. K ) |
| 61 |
3 5 24 57 60
|
ringlzd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( 0g ` R ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
| 62 |
56 61
|
eqtrd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
| 63 |
62
|
ex |
|- ( ( ph /\ j e. NN0 ) -> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 64 |
63
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 65 |
47 50 64
|
rspcedvdw |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 66 |
41 40 44 65
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` R ) ) |
| 67 |
|
fzouzdisj |
|- ( ( 0 ..^ 3 ) i^i ( ZZ>= ` 3 ) ) = (/) |
| 68 |
67
|
a1i |
|- ( ph -> ( ( 0 ..^ 3 ) i^i ( ZZ>= ` 3 ) ) = (/) ) |
| 69 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 70 |
|
3nn0 |
|- 3 e. NN0 |
| 71 |
70 69
|
eleqtri |
|- 3 e. ( ZZ>= ` 0 ) |
| 72 |
|
fzouzsplit |
|- ( 3 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) ) |
| 73 |
71 72
|
ax-mp |
|- ( ZZ>= ` 0 ) = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) |
| 74 |
69 73
|
eqtri |
|- NN0 = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) |
| 75 |
74
|
a1i |
|- ( ph -> NN0 = ( ( 0 ..^ 3 ) u. ( ZZ>= ` 3 ) ) ) |
| 76 |
3 24 6 26 28 40 66 68 75
|
gsumsplit2 |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) ) |
| 77 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 78 |
77
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
| 79 |
78
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) = ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) |
| 80 |
79
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 81 |
14
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> M e. U ) |
| 82 |
|
uzss |
|- ( 3 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) ) |
| 83 |
71 82
|
ax-mp |
|- ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) |
| 84 |
83 69
|
sseqtrri |
|- ( ZZ>= ` 3 ) C_ NN0 |
| 85 |
84
|
a1i |
|- ( ph -> ( ZZ>= ` 3 ) C_ NN0 ) |
| 86 |
85
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> k e. NN0 ) |
| 87 |
15
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( E ` M ) = 2 ) |
| 88 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 89 |
88
|
fveq2i |
|- ( ZZ>= ` ( 2 + 1 ) ) = ( ZZ>= ` 3 ) |
| 90 |
89
|
eleq2i |
|- ( k e. ( ZZ>= ` ( 2 + 1 ) ) <-> k e. ( ZZ>= ` 3 ) ) |
| 91 |
|
2z |
|- 2 e. ZZ |
| 92 |
|
eluzp1l |
|- ( ( 2 e. ZZ /\ k e. ( ZZ>= ` ( 2 + 1 ) ) ) -> 2 < k ) |
| 93 |
91 92
|
mpan |
|- ( k e. ( ZZ>= ` ( 2 + 1 ) ) -> 2 < k ) |
| 94 |
90 93
|
sylbir |
|- ( k e. ( ZZ>= ` 3 ) -> 2 < k ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> 2 < k ) |
| 96 |
87 95
|
eqbrtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( E ` M ) < k ) |
| 97 |
9 1 4 24 8
|
deg1lt |
|- ( ( M e. U /\ k e. NN0 /\ ( E ` M ) < k ) -> ( F ` k ) = ( 0g ` R ) ) |
| 98 |
81 86 96 97
|
syl3anc |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( F ` k ) = ( 0g ` R ) ) |
| 99 |
98
|
oveq1d |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( 0g ` R ) .x. ( k .^ X ) ) ) |
| 100 |
25
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> R e. Ring ) |
| 101 |
100 34
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 102 |
16
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> X e. K ) |
| 103 |
33 7 101 86 102
|
mulgnn0cld |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( k .^ X ) e. K ) |
| 104 |
3 5 24 100 103
|
ringlzd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( 0g ` R ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
| 105 |
99 104
|
eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 3 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
| 106 |
105
|
mpteq2dva |
|- ( ph -> ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) = ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) |
| 107 |
106
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) ) |
| 108 |
13
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 109 |
108
|
grpmndd |
|- ( ph -> R e. Mnd ) |
| 110 |
|
fvexd |
|- ( ph -> ( ZZ>= ` 3 ) e. _V ) |
| 111 |
24
|
gsumz |
|- ( ( R e. Mnd /\ ( ZZ>= ` 3 ) e. _V ) -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 112 |
109 110 111
|
syl2anc |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 113 |
107 112
|
eqtrd |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( 0g ` R ) ) |
| 114 |
80 113
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( 0g ` R ) ) ) |
| 115 |
|
tpex |
|- { 0 , 1 , 2 } e. _V |
| 116 |
115
|
a1i |
|- ( ph -> { 0 , 1 , 2 } e. _V ) |
| 117 |
25
|
adantr |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> R e. Ring ) |
| 118 |
8 4 1 3
|
coe1f |
|- ( M e. U -> F : NN0 --> K ) |
| 119 |
14 118
|
syl |
|- ( ph -> F : NN0 --> K ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> F : NN0 --> K ) |
| 121 |
|
fzo0ssnn0 |
|- ( 0 ..^ 3 ) C_ NN0 |
| 122 |
78 121
|
eqsstrrdi |
|- ( ph -> { 0 , 1 , 2 } C_ NN0 ) |
| 123 |
122
|
sselda |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> k e. NN0 ) |
| 124 |
120 123
|
ffvelcdmd |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( F ` k ) e. K ) |
| 125 |
123 39
|
syldan |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( k .^ X ) e. K ) |
| 126 |
3 5 117 124 125
|
ringcld |
|- ( ( ph /\ k e. { 0 , 1 , 2 } ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
| 127 |
126
|
fmpttd |
|- ( ph -> ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) : { 0 , 1 , 2 } --> K ) |
| 128 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
| 129 |
78 128
|
eqeltrrdi |
|- ( ph -> { 0 , 1 , 2 } e. Fin ) |
| 130 |
127 129 41
|
fidmfisupp |
|- ( ph -> ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` R ) ) |
| 131 |
3 24 26 116 127 130
|
gsumcl |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) e. K ) |
| 132 |
3 6 24 108 131
|
grpridd |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( 0g ` R ) ) = ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 133 |
|
fveq2 |
|- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
| 134 |
133 12
|
eqtr4di |
|- ( k = 0 -> ( F ` k ) = C ) |
| 135 |
|
oveq1 |
|- ( k = 0 -> ( k .^ X ) = ( 0 .^ X ) ) |
| 136 |
134 135
|
oveq12d |
|- ( k = 0 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( C .x. ( 0 .^ X ) ) ) |
| 137 |
|
fveq2 |
|- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
| 138 |
137 11
|
eqtr4di |
|- ( k = 1 -> ( F ` k ) = B ) |
| 139 |
|
oveq1 |
|- ( k = 1 -> ( k .^ X ) = ( 1 .^ X ) ) |
| 140 |
138 139
|
oveq12d |
|- ( k = 1 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( B .x. ( 1 .^ X ) ) ) |
| 141 |
|
fveq2 |
|- ( k = 2 -> ( F ` k ) = ( F ` 2 ) ) |
| 142 |
141 10
|
eqtr4di |
|- ( k = 2 -> ( F ` k ) = A ) |
| 143 |
|
oveq1 |
|- ( k = 2 -> ( k .^ X ) = ( 2 .^ X ) ) |
| 144 |
142 143
|
oveq12d |
|- ( k = 2 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( A .x. ( 2 .^ X ) ) ) |
| 145 |
|
0nn0 |
|- 0 e. NN0 |
| 146 |
145
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 147 |
|
1nn0 |
|- 1 e. NN0 |
| 148 |
147
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 149 |
|
0ne1 |
|- 0 =/= 1 |
| 150 |
149
|
a1i |
|- ( ph -> 0 =/= 1 ) |
| 151 |
|
1ne2 |
|- 1 =/= 2 |
| 152 |
151
|
a1i |
|- ( ph -> 1 =/= 2 ) |
| 153 |
|
0ne2 |
|- 0 =/= 2 |
| 154 |
153
|
a1i |
|- ( ph -> 0 =/= 2 ) |
| 155 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 0 e. NN0 ) -> ( F ` 0 ) e. K ) |
| 156 |
14 145 155
|
sylancl |
|- ( ph -> ( F ` 0 ) e. K ) |
| 157 |
12 156
|
eqeltrid |
|- ( ph -> C e. K ) |
| 158 |
33 7 35 146 16
|
mulgnn0cld |
|- ( ph -> ( 0 .^ X ) e. K ) |
| 159 |
3 5 25 157 158
|
ringcld |
|- ( ph -> ( C .x. ( 0 .^ X ) ) e. K ) |
| 160 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 1 e. NN0 ) -> ( F ` 1 ) e. K ) |
| 161 |
14 147 160
|
sylancl |
|- ( ph -> ( F ` 1 ) e. K ) |
| 162 |
11 161
|
eqeltrid |
|- ( ph -> B e. K ) |
| 163 |
33 7 35 148 16
|
mulgnn0cld |
|- ( ph -> ( 1 .^ X ) e. K ) |
| 164 |
3 5 25 162 163
|
ringcld |
|- ( ph -> ( B .x. ( 1 .^ X ) ) e. K ) |
| 165 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 2 e. NN0 ) -> ( F ` 2 ) e. K ) |
| 166 |
14 48 165
|
sylancl |
|- ( ph -> ( F ` 2 ) e. K ) |
| 167 |
10 166
|
eqeltrid |
|- ( ph -> A e. K ) |
| 168 |
33 7 35 49 16
|
mulgnn0cld |
|- ( ph -> ( 2 .^ X ) e. K ) |
| 169 |
3 5 25 167 168
|
ringcld |
|- ( ph -> ( A .x. ( 2 .^ X ) ) e. K ) |
| 170 |
3 6 136 140 144 26 146 148 49 150 152 154 159 164 169
|
gsumtp |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) ) |
| 171 |
3 6 108 159 164
|
grpcld |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) e. K ) |
| 172 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) e. K /\ ( A .x. ( 2 .^ X ) ) e. K ) -> ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) ) |
| 173 |
26 171 169 172
|
syl3anc |
|- ( ph -> ( ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) .+ ( A .x. ( 2 .^ X ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) ) |
| 174 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( C .x. ( 0 .^ X ) ) e. K /\ ( B .x. ( 1 .^ X ) ) e. K ) -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) ) |
| 175 |
26 159 164 174
|
syl3anc |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) ) |
| 176 |
33 7
|
mulg1 |
|- ( X e. K -> ( 1 .^ X ) = X ) |
| 177 |
16 176
|
syl |
|- ( ph -> ( 1 .^ X ) = X ) |
| 178 |
177
|
oveq2d |
|- ( ph -> ( B .x. ( 1 .^ X ) ) = ( B .x. X ) ) |
| 179 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 180 |
32 179
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 181 |
33 180 7
|
mulg0 |
|- ( X e. K -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 182 |
16 181
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 183 |
182
|
oveq2d |
|- ( ph -> ( C .x. ( 0 .^ X ) ) = ( C .x. ( 1r ` R ) ) ) |
| 184 |
3 5 179 25 157
|
ringridmd |
|- ( ph -> ( C .x. ( 1r ` R ) ) = C ) |
| 185 |
183 184
|
eqtrd |
|- ( ph -> ( C .x. ( 0 .^ X ) ) = C ) |
| 186 |
178 185
|
oveq12d |
|- ( ph -> ( ( B .x. ( 1 .^ X ) ) .+ ( C .x. ( 0 .^ X ) ) ) = ( ( B .x. X ) .+ C ) ) |
| 187 |
175 186
|
eqtrd |
|- ( ph -> ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) = ( ( B .x. X ) .+ C ) ) |
| 188 |
187
|
oveq2d |
|- ( ph -> ( ( A .x. ( 2 .^ X ) ) .+ ( ( C .x. ( 0 .^ X ) ) .+ ( B .x. ( 1 .^ X ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
| 189 |
170 173 188
|
3eqtrd |
|- ( ph -> ( R gsum ( k e. { 0 , 1 , 2 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
| 190 |
114 132 189
|
3eqtrd |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 3 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |
| 191 |
23 76 190
|
3eqtrd |
|- ( ph -> ( ( O ` M ) ` X ) = ( ( A .x. ( 2 .^ X ) ) .+ ( ( B .x. X ) .+ C ) ) ) |