Step |
Hyp |
Ref |
Expression |
1 |
|
gsumtp.b |
|- B = ( Base ` G ) |
2 |
|
gsumtp.p |
|- .+ = ( +g ` G ) |
3 |
|
gsumtp.s |
|- ( k = M -> A = C ) |
4 |
|
gsumtp.t |
|- ( k = N -> A = D ) |
5 |
|
gsumtp.u |
|- ( k = O -> A = E ) |
6 |
|
gsumtp.1 |
|- ( ph -> G e. CMnd ) |
7 |
|
gsumtp.2 |
|- ( ph -> M e. V ) |
8 |
|
gsumtp.3 |
|- ( ph -> N e. W ) |
9 |
|
gsumtp.4 |
|- ( ph -> O e. X ) |
10 |
|
gsumtp.5 |
|- ( ph -> M =/= N ) |
11 |
|
gsumtp.6 |
|- ( ph -> N =/= O ) |
12 |
|
gsumtp.7 |
|- ( ph -> M =/= O ) |
13 |
|
gsumtp.8 |
|- ( ph -> C e. B ) |
14 |
|
gsumtp.9 |
|- ( ph -> D e. B ) |
15 |
|
gsumtp.10 |
|- ( ph -> E e. B ) |
16 |
|
tpfi |
|- { M , N , O } e. Fin |
17 |
16
|
a1i |
|- ( ph -> { M , N , O } e. Fin ) |
18 |
3
|
adantl |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = M ) -> A = C ) |
19 |
13
|
ad2antrr |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = M ) -> C e. B ) |
20 |
18 19
|
eqeltrd |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = M ) -> A e. B ) |
21 |
4
|
adantl |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = N ) -> A = D ) |
22 |
14
|
ad2antrr |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = N ) -> D e. B ) |
23 |
21 22
|
eqeltrd |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = N ) -> A e. B ) |
24 |
5
|
adantl |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = O ) -> A = E ) |
25 |
15
|
ad2antrr |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = O ) -> E e. B ) |
26 |
24 25
|
eqeltrd |
|- ( ( ( ph /\ k e. { M , N , O } ) /\ k = O ) -> A e. B ) |
27 |
|
eltpi |
|- ( k e. { M , N , O } -> ( k = M \/ k = N \/ k = O ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ k e. { M , N , O } ) -> ( k = M \/ k = N \/ k = O ) ) |
29 |
20 23 26 28
|
mpjao3dan |
|- ( ( ph /\ k e. { M , N , O } ) -> A e. B ) |
30 |
|
disjprsn |
|- ( ( M =/= O /\ N =/= O ) -> ( { M , N } i^i { O } ) = (/) ) |
31 |
12 11 30
|
syl2anc |
|- ( ph -> ( { M , N } i^i { O } ) = (/) ) |
32 |
|
df-tp |
|- { M , N , O } = ( { M , N } u. { O } ) |
33 |
32
|
a1i |
|- ( ph -> { M , N , O } = ( { M , N } u. { O } ) ) |
34 |
1 2 6 17 29 31 33
|
gsummptfidmsplit |
|- ( ph -> ( G gsum ( k e. { M , N , O } |-> A ) ) = ( ( G gsum ( k e. { M , N } |-> A ) ) .+ ( G gsum ( k e. { O } |-> A ) ) ) ) |
35 |
1 2 3 4
|
gsumpr |
|- ( ( G e. CMnd /\ ( M e. V /\ N e. W /\ M =/= N ) /\ ( C e. B /\ D e. B ) ) -> ( G gsum ( k e. { M , N } |-> A ) ) = ( C .+ D ) ) |
36 |
6 7 8 10 13 14 35
|
syl132anc |
|- ( ph -> ( G gsum ( k e. { M , N } |-> A ) ) = ( C .+ D ) ) |
37 |
6
|
cmnmndd |
|- ( ph -> G e. Mnd ) |
38 |
5
|
adantl |
|- ( ( ph /\ k = O ) -> A = E ) |
39 |
1 37 9 15 38
|
gsumsnd |
|- ( ph -> ( G gsum ( k e. { O } |-> A ) ) = E ) |
40 |
36 39
|
oveq12d |
|- ( ph -> ( ( G gsum ( k e. { M , N } |-> A ) ) .+ ( G gsum ( k e. { O } |-> A ) ) ) = ( ( C .+ D ) .+ E ) ) |
41 |
34 40
|
eqtrd |
|- ( ph -> ( G gsum ( k e. { M , N , O } |-> A ) ) = ( ( C .+ D ) .+ E ) ) |