Metamath Proof Explorer


Theorem gsumtp

Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses gsumtp.b 𝐵 = ( Base ‘ 𝐺 )
gsumtp.p + = ( +g𝐺 )
gsumtp.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
gsumtp.t ( 𝑘 = 𝑁𝐴 = 𝐷 )
gsumtp.u ( 𝑘 = 𝑂𝐴 = 𝐸 )
gsumtp.1 ( 𝜑𝐺 ∈ CMnd )
gsumtp.2 ( 𝜑𝑀𝑉 )
gsumtp.3 ( 𝜑𝑁𝑊 )
gsumtp.4 ( 𝜑𝑂𝑋 )
gsumtp.5 ( 𝜑𝑀𝑁 )
gsumtp.6 ( 𝜑𝑁𝑂 )
gsumtp.7 ( 𝜑𝑀𝑂 )
gsumtp.8 ( 𝜑𝐶𝐵 )
gsumtp.9 ( 𝜑𝐷𝐵 )
gsumtp.10 ( 𝜑𝐸𝐵 )
Assertion gsumtp ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ↦ 𝐴 ) ) = ( ( 𝐶 + 𝐷 ) + 𝐸 ) )

Proof

Step Hyp Ref Expression
1 gsumtp.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumtp.p + = ( +g𝐺 )
3 gsumtp.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
4 gsumtp.t ( 𝑘 = 𝑁𝐴 = 𝐷 )
5 gsumtp.u ( 𝑘 = 𝑂𝐴 = 𝐸 )
6 gsumtp.1 ( 𝜑𝐺 ∈ CMnd )
7 gsumtp.2 ( 𝜑𝑀𝑉 )
8 gsumtp.3 ( 𝜑𝑁𝑊 )
9 gsumtp.4 ( 𝜑𝑂𝑋 )
10 gsumtp.5 ( 𝜑𝑀𝑁 )
11 gsumtp.6 ( 𝜑𝑁𝑂 )
12 gsumtp.7 ( 𝜑𝑀𝑂 )
13 gsumtp.8 ( 𝜑𝐶𝐵 )
14 gsumtp.9 ( 𝜑𝐷𝐵 )
15 gsumtp.10 ( 𝜑𝐸𝐵 )
16 tpfi { 𝑀 , 𝑁 , 𝑂 } ∈ Fin
17 16 a1i ( 𝜑 → { 𝑀 , 𝑁 , 𝑂 } ∈ Fin )
18 3 adantl ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 )
19 13 ad2antrr ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐶𝐵 )
20 18 19 eqeltrd ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐴𝐵 )
21 4 adantl ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐴 = 𝐷 )
22 14 ad2antrr ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐷𝐵 )
23 21 22 eqeltrd ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐴𝐵 )
24 5 adantl ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐴 = 𝐸 )
25 15 ad2antrr ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐸𝐵 )
26 24 25 eqeltrd ( ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐴𝐵 )
27 eltpi ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } → ( 𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂 ) )
28 27 adantl ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) → ( 𝑘 = 𝑀𝑘 = 𝑁𝑘 = 𝑂 ) )
29 20 23 26 28 mpjao3dan ( ( 𝜑𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) → 𝐴𝐵 )
30 disjprsn ( ( 𝑀𝑂𝑁𝑂 ) → ( { 𝑀 , 𝑁 } ∩ { 𝑂 } ) = ∅ )
31 12 11 30 syl2anc ( 𝜑 → ( { 𝑀 , 𝑁 } ∩ { 𝑂 } ) = ∅ )
32 df-tp { 𝑀 , 𝑁 , 𝑂 } = ( { 𝑀 , 𝑁 } ∪ { 𝑂 } )
33 32 a1i ( 𝜑 → { 𝑀 , 𝑁 , 𝑂 } = ( { 𝑀 , 𝑁 } ∪ { 𝑂 } ) )
34 1 2 6 17 29 31 33 gsummptfidmsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) ) )
35 1 2 3 4 gsumpr ( ( 𝐺 ∈ CMnd ∧ ( 𝑀𝑉𝑁𝑊𝑀𝑁 ) ∧ ( 𝐶𝐵𝐷𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) )
36 6 7 8 10 13 14 35 syl132anc ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) )
37 6 cmnmndd ( 𝜑𝐺 ∈ Mnd )
38 5 adantl ( ( 𝜑𝑘 = 𝑂 ) → 𝐴 = 𝐸 )
39 1 37 9 15 38 gsumsnd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) = 𝐸 )
40 36 39 oveq12d ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) ) = ( ( 𝐶 + 𝐷 ) + 𝐸 ) )
41 34 40 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ↦ 𝐴 ) ) = ( ( 𝐶 + 𝐷 ) + 𝐸 ) )