Step |
Hyp |
Ref |
Expression |
1 |
|
gsumtp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumtp.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumtp.s |
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) |
4 |
|
gsumtp.t |
⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐷 ) |
5 |
|
gsumtp.u |
⊢ ( 𝑘 = 𝑂 → 𝐴 = 𝐸 ) |
6 |
|
gsumtp.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
7 |
|
gsumtp.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
8 |
|
gsumtp.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
9 |
|
gsumtp.4 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑋 ) |
10 |
|
gsumtp.5 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑁 ) |
11 |
|
gsumtp.6 |
⊢ ( 𝜑 → 𝑁 ≠ 𝑂 ) |
12 |
|
gsumtp.7 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑂 ) |
13 |
|
gsumtp.8 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
14 |
|
gsumtp.9 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) |
15 |
|
gsumtp.10 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
16 |
|
tpfi |
⊢ { 𝑀 , 𝑁 , 𝑂 } ∈ Fin |
17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝑂 } ∈ Fin ) |
18 |
3
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) |
19 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐶 ∈ 𝐵 ) |
20 |
18 19
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑀 ) → 𝐴 ∈ 𝐵 ) |
21 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐴 = 𝐷 ) |
22 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐷 ∈ 𝐵 ) |
23 |
21 22
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑁 ) → 𝐴 ∈ 𝐵 ) |
24 |
5
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐴 = 𝐸 ) |
25 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐸 ∈ 𝐵 ) |
26 |
24 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) ∧ 𝑘 = 𝑂 ) → 𝐴 ∈ 𝐵 ) |
27 |
|
eltpi |
⊢ ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝑁 ∨ 𝑘 = 𝑂 ) ) |
29 |
20 23 26 28
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ) → 𝐴 ∈ 𝐵 ) |
30 |
|
disjprsn |
⊢ ( ( 𝑀 ≠ 𝑂 ∧ 𝑁 ≠ 𝑂 ) → ( { 𝑀 , 𝑁 } ∩ { 𝑂 } ) = ∅ ) |
31 |
12 11 30
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑀 , 𝑁 } ∩ { 𝑂 } ) = ∅ ) |
32 |
|
df-tp |
⊢ { 𝑀 , 𝑁 , 𝑂 } = ( { 𝑀 , 𝑁 } ∪ { 𝑂 } ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝑂 } = ( { 𝑀 , 𝑁 } ∪ { 𝑂 } ) ) |
34 |
1 2 6 17 29 31 33
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) ) ) |
35 |
1 2 3 4
|
gsumpr |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) ) |
36 |
6 7 8 10 13 14 35
|
syl132anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) = ( 𝐶 + 𝐷 ) ) |
37 |
6
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
38 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑂 ) → 𝐴 = 𝐸 ) |
39 |
1 37 9 15 38
|
gsumsnd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) = 𝐸 ) |
40 |
36 39
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 } ↦ 𝐴 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑂 } ↦ 𝐴 ) ) ) = ( ( 𝐶 + 𝐷 ) + 𝐸 ) ) |
41 |
34 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 , 𝑁 , 𝑂 } ↦ 𝐴 ) ) = ( ( 𝐶 + 𝐷 ) + 𝐸 ) ) |