Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzrsum.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
gsumzrsum.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
4 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
5 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
6 |
|
cnfldex |
⊢ ℂfld ∈ V |
7 |
6
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ V ) |
8 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℤ ⊆ ℂ ) |
10 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℤ ) |
11 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
12 |
|
addlid |
⊢ ( 𝑘 ∈ ℂ → ( 0 + 𝑘 ) = 𝑘 ) |
13 |
|
addrid |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 0 ) = 𝑘 ) |
14 |
12 13
|
jca |
⊢ ( 𝑘 ∈ ℂ → ( ( 0 + 𝑘 ) = 𝑘 ∧ ( 𝑘 + 0 ) = 𝑘 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℂ ) → ( ( 0 + 𝑘 ) = 𝑘 ∧ ( 𝑘 + 0 ) = 𝑘 ) ) |
16 |
3 4 5 7 1 9 10 11 15
|
gsumress |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ℤring Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
17 |
2
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
18 |
1 17
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
19 |
16 18
|
eqtr3d |
⊢ ( 𝜑 → ( ℤring Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |