Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzrsum.1 |
|- ( ph -> A e. Fin ) |
2 |
|
gsumzrsum.2 |
|- ( ( ph /\ k e. A ) -> B e. ZZ ) |
3 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
4 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
5 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
6 |
|
cnfldex |
|- CCfld e. _V |
7 |
6
|
a1i |
|- ( ph -> CCfld e. _V ) |
8 |
|
zsscn |
|- ZZ C_ CC |
9 |
8
|
a1i |
|- ( ph -> ZZ C_ CC ) |
10 |
2
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> ZZ ) |
11 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
12 |
|
addlid |
|- ( k e. CC -> ( 0 + k ) = k ) |
13 |
|
addrid |
|- ( k e. CC -> ( k + 0 ) = k ) |
14 |
12 13
|
jca |
|- ( k e. CC -> ( ( 0 + k ) = k /\ ( k + 0 ) = k ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. CC ) -> ( ( 0 + k ) = k /\ ( k + 0 ) = k ) ) |
16 |
3 4 5 7 1 9 10 11 15
|
gsumress |
|- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = ( ZZring gsum ( k e. A |-> B ) ) ) |
17 |
2
|
zcnd |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
18 |
1 17
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
19 |
16 18
|
eqtr3d |
|- ( ph -> ( ZZring gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |