| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1leb.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1leb.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1leb.b |
|- B = ( Base ` P ) |
| 4 |
|
deg1leb.y |
|- .0. = ( 0g ` R ) |
| 5 |
|
deg1leb.a |
|- A = ( coe1 ` F ) |
| 6 |
|
simp3 |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( D ` F ) < G ) |
| 7 |
|
breq2 |
|- ( x = G -> ( ( D ` F ) < x <-> ( D ` F ) < G ) ) |
| 8 |
|
fveqeq2 |
|- ( x = G -> ( ( A ` x ) = .0. <-> ( A ` G ) = .0. ) ) |
| 9 |
7 8
|
imbi12d |
|- ( x = G -> ( ( ( D ` F ) < x -> ( A ` x ) = .0. ) <-> ( ( D ` F ) < G -> ( A ` G ) = .0. ) ) ) |
| 10 |
1 2 3
|
deg1xrcl |
|- ( F e. B -> ( D ` F ) e. RR* ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( D ` F ) e. RR* ) |
| 12 |
11
|
xrleidd |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( D ` F ) <_ ( D ` F ) ) |
| 13 |
|
simp1 |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> F e. B ) |
| 14 |
1 2 3 4 5
|
deg1leb |
|- ( ( F e. B /\ ( D ` F ) e. RR* ) -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. NN0 ( ( D ` F ) < x -> ( A ` x ) = .0. ) ) ) |
| 15 |
13 10 14
|
syl2anc2 |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. NN0 ( ( D ` F ) < x -> ( A ` x ) = .0. ) ) ) |
| 16 |
12 15
|
mpbid |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> A. x e. NN0 ( ( D ` F ) < x -> ( A ` x ) = .0. ) ) |
| 17 |
|
simp2 |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> G e. NN0 ) |
| 18 |
9 16 17
|
rspcdva |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( ( D ` F ) < G -> ( A ` G ) = .0. ) ) |
| 19 |
6 18
|
mpd |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( A ` G ) = .0. ) |