Metamath Proof Explorer


Theorem deg1lt

Description: If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d D=deg1R
deg1leb.p P=Poly1R
deg1leb.b B=BaseP
deg1leb.y 0˙=0R
deg1leb.a A=coe1F
Assertion deg1lt FBG0DF<GAG=0˙

Proof

Step Hyp Ref Expression
1 deg1leb.d D=deg1R
2 deg1leb.p P=Poly1R
3 deg1leb.b B=BaseP
4 deg1leb.y 0˙=0R
5 deg1leb.a A=coe1F
6 simp3 FBG0DF<GDF<G
7 breq2 x=GDF<xDF<G
8 fveqeq2 x=GAx=0˙AG=0˙
9 7 8 imbi12d x=GDF<xAx=0˙DF<GAG=0˙
10 1 2 3 deg1xrcl FBDF*
11 10 3ad2ant1 FBG0DF<GDF*
12 11 xrleidd FBG0DF<GDFDF
13 simp1 FBG0DF<GFB
14 1 2 3 4 5 deg1leb FBDF*DFDFx0DF<xAx=0˙
15 13 10 14 syl2anc2 FBG0DF<GDFDFx0DF<xAx=0˙
16 12 15 mpbid FBG0DF<Gx0DF<xAx=0˙
17 simp2 FBG0DF<GG0
18 9 16 17 rspcdva FBG0DF<GDF<GAG=0˙
19 6 18 mpd FBG0DF<GAG=0˙