Metamath Proof Explorer


Theorem deg1xrcl

Description: Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d D=deg1R
deg1xrf.p P=Poly1R
deg1xrf.b B=BaseP
Assertion deg1xrcl FBDF*

Proof

Step Hyp Ref Expression
1 deg1xrf.d D=deg1R
2 deg1xrf.p P=Poly1R
3 deg1xrf.b B=BaseP
4 1 2 3 deg1xrf D:B*
5 4 ffvelcdmi FBDF*