Metamath Proof Explorer


Theorem deg1ge

Description: Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d D=deg1R
deg1leb.p P=Poly1R
deg1leb.b B=BaseP
deg1leb.y 0˙=0R
deg1leb.a A=coe1F
Assertion deg1ge FBG0AG0˙GDF

Proof

Step Hyp Ref Expression
1 deg1leb.d D=deg1R
2 deg1leb.p P=Poly1R
3 deg1leb.b B=BaseP
4 deg1leb.y 0˙=0R
5 deg1leb.a A=coe1F
6 1 2 3 deg1xrcl FBDF*
7 nn0re G0G
8 7 rexrd G0G*
9 xrltnle DF*G*DF<G¬GDF
10 6 8 9 syl2an FBG0DF<G¬GDF
11 1 2 3 4 5 deg1lt FBG0DF<GAG=0˙
12 11 3expia FBG0DF<GAG=0˙
13 10 12 sylbird FBG0¬GDFAG=0˙
14 13 necon1ad FBG0AG0˙GDF
15 14 3impia FBG0AG0˙GDF