| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1mul3.s |
|
| 2 |
|
coe1mul3.t |
|
| 3 |
|
coe1mul3.u |
|
| 4 |
|
coe1mul3.b |
|
| 5 |
|
coe1mul3.d |
|
| 6 |
|
coe1mul3.r |
|
| 7 |
|
coe1mul3.f1 |
|
| 8 |
|
coe1mul3.f2 |
|
| 9 |
|
coe1mul3.f3 |
|
| 10 |
|
coe1mul3.g1 |
|
| 11 |
|
coe1mul3.g2 |
|
| 12 |
|
coe1mul3.g3 |
|
| 13 |
1 2 3 4
|
coe1mul |
|
| 14 |
6 7 10 13
|
syl3anc |
|
| 15 |
14
|
fveq1d |
|
| 16 |
8 11
|
nn0addcld |
|
| 17 |
|
oveq2 |
|
| 18 |
|
fvoveq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
17 19
|
mpteq12dv |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
eqid |
|
| 23 |
|
ovex |
|
| 24 |
21 22 23
|
fvmpt |
|
| 25 |
16 24
|
syl |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
ringmnd |
|
| 29 |
6 28
|
syl |
|
| 30 |
|
ovexd |
|
| 31 |
8
|
nn0red |
|
| 32 |
|
nn0addge1 |
|
| 33 |
31 11 32
|
syl2anc |
|
| 34 |
|
fznn0 |
|
| 35 |
16 34
|
syl |
|
| 36 |
8 33 35
|
mpbir2and |
|
| 37 |
6
|
adantr |
|
| 38 |
|
eqid |
|
| 39 |
38 4 1 26
|
coe1f |
|
| 40 |
7 39
|
syl |
|
| 41 |
|
elfznn0 |
|
| 42 |
|
ffvelcdm |
|
| 43 |
40 41 42
|
syl2an |
|
| 44 |
|
eqid |
|
| 45 |
44 4 1 26
|
coe1f |
|
| 46 |
10 45
|
syl |
|
| 47 |
|
fznn0sub |
|
| 48 |
|
ffvelcdm |
|
| 49 |
46 47 48
|
syl2an |
|
| 50 |
26 3
|
ringcl |
|
| 51 |
37 43 49 50
|
syl3anc |
|
| 52 |
51
|
fmpttd |
|
| 53 |
|
eldifsn |
|
| 54 |
41
|
adantl |
|
| 55 |
54
|
nn0red |
|
| 56 |
31
|
adantr |
|
| 57 |
55 56
|
lttri2d |
|
| 58 |
10
|
ad2antrr |
|
| 59 |
47
|
adantl |
|
| 60 |
59
|
adantr |
|
| 61 |
5 1 4
|
deg1xrcl |
|
| 62 |
10 61
|
syl |
|
| 63 |
62
|
ad2antrr |
|
| 64 |
11
|
nn0red |
|
| 65 |
64
|
rexrd |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
16
|
nn0red |
|
| 68 |
67
|
adantr |
|
| 69 |
68 55
|
resubcld |
|
| 70 |
69
|
rexrd |
|
| 71 |
70
|
adantr |
|
| 72 |
12
|
ad2antrr |
|
| 73 |
64
|
adantr |
|
| 74 |
55 56 73
|
ltadd1d |
|
| 75 |
55 73 68
|
ltaddsub2d |
|
| 76 |
74 75
|
bitrd |
|
| 77 |
76
|
biimpa |
|
| 78 |
63 66 71 72 77
|
xrlelttrd |
|
| 79 |
5 1 4 27 44
|
deg1lt |
|
| 80 |
58 60 78 79
|
syl3anc |
|
| 81 |
80
|
oveq2d |
|
| 82 |
26 3 27
|
ringrz |
|
| 83 |
37 43 82
|
syl2anc |
|
| 84 |
83
|
adantr |
|
| 85 |
81 84
|
eqtrd |
|
| 86 |
7
|
ad2antrr |
|
| 87 |
54
|
adantr |
|
| 88 |
5 1 4
|
deg1xrcl |
|
| 89 |
7 88
|
syl |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
31
|
rexrd |
|
| 92 |
91
|
ad2antrr |
|
| 93 |
55
|
rexrd |
|
| 94 |
93
|
adantr |
|
| 95 |
9
|
ad2antrr |
|
| 96 |
|
simpr |
|
| 97 |
90 92 94 95 96
|
xrlelttrd |
|
| 98 |
5 1 4 27 38
|
deg1lt |
|
| 99 |
86 87 97 98
|
syl3anc |
|
| 100 |
99
|
oveq1d |
|
| 101 |
26 3 27
|
ringlz |
|
| 102 |
37 49 101
|
syl2anc |
|
| 103 |
102
|
adantr |
|
| 104 |
100 103
|
eqtrd |
|
| 105 |
85 104
|
jaodan |
|
| 106 |
105
|
ex |
|
| 107 |
57 106
|
sylbid |
|
| 108 |
107
|
impr |
|
| 109 |
53 108
|
sylan2b |
|
| 110 |
109 30
|
suppss2 |
|
| 111 |
26 27 29 30 36 52 110
|
gsumpt |
|
| 112 |
|
fveq2 |
|
| 113 |
|
oveq2 |
|
| 114 |
113
|
fveq2d |
|
| 115 |
112 114
|
oveq12d |
|
| 116 |
|
eqid |
|
| 117 |
|
ovex |
|
| 118 |
115 116 117
|
fvmpt |
|
| 119 |
36 118
|
syl |
|
| 120 |
8
|
nn0cnd |
|
| 121 |
11
|
nn0cnd |
|
| 122 |
120 121
|
pncan2d |
|
| 123 |
122
|
fveq2d |
|
| 124 |
123
|
oveq2d |
|
| 125 |
111 119 124
|
3eqtrd |
|
| 126 |
15 25 125
|
3eqtrd |
|