Metamath Proof Explorer


Theorem coe1mul3

Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1mul3.s Y=Poly1R
coe1mul3.t ˙=Y
coe1mul3.u ·˙=R
coe1mul3.b B=BaseY
coe1mul3.d D=deg1R
coe1mul3.r φRRing
coe1mul3.f1 φFB
coe1mul3.f2 φI0
coe1mul3.f3 φDFI
coe1mul3.g1 φGB
coe1mul3.g2 φJ0
coe1mul3.g3 φDGJ
Assertion coe1mul3 φcoe1F˙GI+J=coe1FI·˙coe1GJ

Proof

Step Hyp Ref Expression
1 coe1mul3.s Y=Poly1R
2 coe1mul3.t ˙=Y
3 coe1mul3.u ·˙=R
4 coe1mul3.b B=BaseY
5 coe1mul3.d D=deg1R
6 coe1mul3.r φRRing
7 coe1mul3.f1 φFB
8 coe1mul3.f2 φI0
9 coe1mul3.f3 φDFI
10 coe1mul3.g1 φGB
11 coe1mul3.g2 φJ0
12 coe1mul3.g3 φDGJ
13 1 2 3 4 coe1mul RRingFBGBcoe1F˙G=x0Ry=0xcoe1Fy·˙coe1Gxy
14 6 7 10 13 syl3anc φcoe1F˙G=x0Ry=0xcoe1Fy·˙coe1Gxy
15 14 fveq1d φcoe1F˙GI+J=x0Ry=0xcoe1Fy·˙coe1GxyI+J
16 8 11 nn0addcld φI+J0
17 oveq2 x=I+J0x=0I+J
18 fvoveq1 x=I+Jcoe1Gxy=coe1GI+J-y
19 18 oveq2d x=I+Jcoe1Fy·˙coe1Gxy=coe1Fy·˙coe1GI+J-y
20 17 19 mpteq12dv x=I+Jy0xcoe1Fy·˙coe1Gxy=y0I+Jcoe1Fy·˙coe1GI+J-y
21 20 oveq2d x=I+JRy=0xcoe1Fy·˙coe1Gxy=Ry=0I+Jcoe1Fy·˙coe1GI+J-y
22 eqid x0Ry=0xcoe1Fy·˙coe1Gxy=x0Ry=0xcoe1Fy·˙coe1Gxy
23 ovex Ry=0I+Jcoe1Fy·˙coe1GI+J-yV
24 21 22 23 fvmpt I+J0x0Ry=0xcoe1Fy·˙coe1GxyI+J=Ry=0I+Jcoe1Fy·˙coe1GI+J-y
25 16 24 syl φx0Ry=0xcoe1Fy·˙coe1GxyI+J=Ry=0I+Jcoe1Fy·˙coe1GI+J-y
26 eqid BaseR=BaseR
27 eqid 0R=0R
28 ringmnd RRingRMnd
29 6 28 syl φRMnd
30 ovexd φ0I+JV
31 8 nn0red φI
32 nn0addge1 IJ0II+J
33 31 11 32 syl2anc φII+J
34 fznn0 I+J0I0I+JI0II+J
35 16 34 syl φI0I+JI0II+J
36 8 33 35 mpbir2and φI0I+J
37 6 adantr φy0I+JRRing
38 eqid coe1F=coe1F
39 38 4 1 26 coe1f FBcoe1F:0BaseR
40 7 39 syl φcoe1F:0BaseR
41 elfznn0 y0I+Jy0
42 ffvelcdm coe1F:0BaseRy0coe1FyBaseR
43 40 41 42 syl2an φy0I+Jcoe1FyBaseR
44 eqid coe1G=coe1G
45 44 4 1 26 coe1f GBcoe1G:0BaseR
46 10 45 syl φcoe1G:0BaseR
47 fznn0sub y0I+JI+J-y0
48 ffvelcdm coe1G:0BaseRI+J-y0coe1GI+J-yBaseR
49 46 47 48 syl2an φy0I+Jcoe1GI+J-yBaseR
50 26 3 ringcl RRingcoe1FyBaseRcoe1GI+J-yBaseRcoe1Fy·˙coe1GI+J-yBaseR
51 37 43 49 50 syl3anc φy0I+Jcoe1Fy·˙coe1GI+J-yBaseR
52 51 fmpttd φy0I+Jcoe1Fy·˙coe1GI+J-y:0I+JBaseR
53 eldifsn y0I+JIy0I+JyI
54 41 adantl φy0I+Jy0
55 54 nn0red φy0I+Jy
56 31 adantr φy0I+JI
57 55 56 lttri2d φy0I+JyIy<II<y
58 10 ad2antrr φy0I+Jy<IGB
59 47 adantl φy0I+JI+J-y0
60 59 adantr φy0I+Jy<II+J-y0
61 5 1 4 deg1xrcl GBDG*
62 10 61 syl φDG*
63 62 ad2antrr φy0I+Jy<IDG*
64 11 nn0red φJ
65 64 rexrd φJ*
66 65 ad2antrr φy0I+Jy<IJ*
67 16 nn0red φI+J
68 67 adantr φy0I+JI+J
69 68 55 resubcld φy0I+JI+J-y
70 69 rexrd φy0I+JI+J-y*
71 70 adantr φy0I+Jy<II+J-y*
72 12 ad2antrr φy0I+Jy<IDGJ
73 64 adantr φy0I+JJ
74 55 56 73 ltadd1d φy0I+Jy<Iy+J<I+J
75 55 73 68 ltaddsub2d φy0I+Jy+J<I+JJ<I+J-y
76 74 75 bitrd φy0I+Jy<IJ<I+J-y
77 76 biimpa φy0I+Jy<IJ<I+J-y
78 63 66 71 72 77 xrlelttrd φy0I+Jy<IDG<I+J-y
79 5 1 4 27 44 deg1lt GBI+J-y0DG<I+J-ycoe1GI+J-y=0R
80 58 60 78 79 syl3anc φy0I+Jy<Icoe1GI+J-y=0R
81 80 oveq2d φy0I+Jy<Icoe1Fy·˙coe1GI+J-y=coe1Fy·˙0R
82 26 3 27 ringrz RRingcoe1FyBaseRcoe1Fy·˙0R=0R
83 37 43 82 syl2anc φy0I+Jcoe1Fy·˙0R=0R
84 83 adantr φy0I+Jy<Icoe1Fy·˙0R=0R
85 81 84 eqtrd φy0I+Jy<Icoe1Fy·˙coe1GI+J-y=0R
86 7 ad2antrr φy0I+JI<yFB
87 54 adantr φy0I+JI<yy0
88 5 1 4 deg1xrcl FBDF*
89 7 88 syl φDF*
90 89 ad2antrr φy0I+JI<yDF*
91 31 rexrd φI*
92 91 ad2antrr φy0I+JI<yI*
93 55 rexrd φy0I+Jy*
94 93 adantr φy0I+JI<yy*
95 9 ad2antrr φy0I+JI<yDFI
96 simpr φy0I+JI<yI<y
97 90 92 94 95 96 xrlelttrd φy0I+JI<yDF<y
98 5 1 4 27 38 deg1lt FBy0DF<ycoe1Fy=0R
99 86 87 97 98 syl3anc φy0I+JI<ycoe1Fy=0R
100 99 oveq1d φy0I+JI<ycoe1Fy·˙coe1GI+J-y=0R·˙coe1GI+J-y
101 26 3 27 ringlz RRingcoe1GI+J-yBaseR0R·˙coe1GI+J-y=0R
102 37 49 101 syl2anc φy0I+J0R·˙coe1GI+J-y=0R
103 102 adantr φy0I+JI<y0R·˙coe1GI+J-y=0R
104 100 103 eqtrd φy0I+JI<ycoe1Fy·˙coe1GI+J-y=0R
105 85 104 jaodan φy0I+Jy<II<ycoe1Fy·˙coe1GI+J-y=0R
106 105 ex φy0I+Jy<II<ycoe1Fy·˙coe1GI+J-y=0R
107 57 106 sylbid φy0I+JyIcoe1Fy·˙coe1GI+J-y=0R
108 107 impr φy0I+JyIcoe1Fy·˙coe1GI+J-y=0R
109 53 108 sylan2b φy0I+JIcoe1Fy·˙coe1GI+J-y=0R
110 109 30 suppss2 φy0I+Jcoe1Fy·˙coe1GI+J-ysupp0RI
111 26 27 29 30 36 52 110 gsumpt φRy=0I+Jcoe1Fy·˙coe1GI+J-y=y0I+Jcoe1Fy·˙coe1GI+J-yI
112 fveq2 y=Icoe1Fy=coe1FI
113 oveq2 y=II+J-y=I+J-I
114 113 fveq2d y=Icoe1GI+J-y=coe1GI+J-I
115 112 114 oveq12d y=Icoe1Fy·˙coe1GI+J-y=coe1FI·˙coe1GI+J-I
116 eqid y0I+Jcoe1Fy·˙coe1GI+J-y=y0I+Jcoe1Fy·˙coe1GI+J-y
117 ovex coe1FI·˙coe1GI+J-IV
118 115 116 117 fvmpt I0I+Jy0I+Jcoe1Fy·˙coe1GI+J-yI=coe1FI·˙coe1GI+J-I
119 36 118 syl φy0I+Jcoe1Fy·˙coe1GI+J-yI=coe1FI·˙coe1GI+J-I
120 8 nn0cnd φI
121 11 nn0cnd φJ
122 120 121 pncan2d φI+J-I=J
123 122 fveq2d φcoe1GI+J-I=coe1GJ
124 123 oveq2d φcoe1FI·˙coe1GI+J-I=coe1FI·˙coe1GJ
125 111 119 124 3eqtrd φRy=0I+Jcoe1Fy·˙coe1GI+J-y=coe1FI·˙coe1GJ
126 15 25 125 3eqtrd φcoe1F˙GI+J=coe1FI·˙coe1GJ