Metamath Proof Explorer


Theorem coe1mul4

Description: Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1mul3.s Y=Poly1R
coe1mul3.t ˙=Y
coe1mul3.u ·˙=R
coe1mul3.b B=BaseY
coe1mul3.d D=deg1R
coe1mul4.z 0˙=0Y
coe1mul4.r φRRing
coe1mul4.f1 φFB
coe1mul4.f2 φF0˙
coe1mul4.g1 φGB
coe1mul4.g2 φG0˙
Assertion coe1mul4 φcoe1F˙GDF+DG=coe1FDF·˙coe1GDG

Proof

Step Hyp Ref Expression
1 coe1mul3.s Y=Poly1R
2 coe1mul3.t ˙=Y
3 coe1mul3.u ·˙=R
4 coe1mul3.b B=BaseY
5 coe1mul3.d D=deg1R
6 coe1mul4.z 0˙=0Y
7 coe1mul4.r φRRing
8 coe1mul4.f1 φFB
9 coe1mul4.f2 φF0˙
10 coe1mul4.g1 φGB
11 coe1mul4.g2 φG0˙
12 5 1 6 4 deg1nn0cl RRingFBF0˙DF0
13 7 8 9 12 syl3anc φDF0
14 13 nn0red φDF
15 14 leidd φDFDF
16 5 1 6 4 deg1nn0cl RRingGBG0˙DG0
17 7 10 11 16 syl3anc φDG0
18 17 nn0red φDG
19 18 leidd φDGDG
20 1 2 3 4 5 7 8 13 15 10 17 19 coe1mul3 φcoe1F˙GDF+DG=coe1FDF·˙coe1GDG