Description: Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coe1mul3.s | |
|
coe1mul3.t | |
||
coe1mul3.u | |
||
coe1mul3.b | |
||
coe1mul3.d | |
||
coe1mul4.z | |
||
coe1mul4.r | |
||
coe1mul4.f1 | |
||
coe1mul4.f2 | |
||
coe1mul4.g1 | |
||
coe1mul4.g2 | |
||
Assertion | coe1mul4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1mul3.s | |
|
2 | coe1mul3.t | |
|
3 | coe1mul3.u | |
|
4 | coe1mul3.b | |
|
5 | coe1mul3.d | |
|
6 | coe1mul4.z | |
|
7 | coe1mul4.r | |
|
8 | coe1mul4.f1 | |
|
9 | coe1mul4.f2 | |
|
10 | coe1mul4.g1 | |
|
11 | coe1mul4.g2 | |
|
12 | 5 1 6 4 | deg1nn0cl | |
13 | 7 8 9 12 | syl3anc | |
14 | 13 | nn0red | |
15 | 14 | leidd | |
16 | 5 1 6 4 | deg1nn0cl | |
17 | 7 10 11 16 | syl3anc | |
18 | 17 | nn0red | |
19 | 18 | leidd | |
20 | 1 2 3 4 5 7 8 13 15 10 17 19 | coe1mul3 | |