Metamath Proof Explorer


Theorem deg1nn0cl

Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
deg1nn0cl.b B=BaseP
Assertion deg1nn0cl RRingFBF0˙DF0

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 deg1nn0cl.b B=BaseP
5 1 deg1fval D=1𝑜mDegR
6 eqid 1𝑜mPolyR=1𝑜mPolyR
7 6 2 3 ply1mpl0 0˙=01𝑜mPolyR
8 eqid PwSer1R=PwSer1R
9 2 8 4 ply1bas B=Base1𝑜mPolyR
10 5 6 7 9 mdegnn0cl RRingFBF0˙DF0