Metamath Proof Explorer


Theorem mdegnn0cl

Description: Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses mdeg0.d D = I mDeg R
mdeg0.p P = I mPoly R
mdeg0.z 0 ˙ = 0 P
mdegnn0cl.b B = Base P
Assertion mdegnn0cl R Ring F B F 0 ˙ D F 0

Proof

Step Hyp Ref Expression
1 mdeg0.d D = I mDeg R
2 mdeg0.p P = I mPoly R
3 mdeg0.z 0 ˙ = 0 P
4 mdegnn0cl.b B = Base P
5 eqid 0 R = 0 R
6 eqid m 0 I | m -1 Fin = m 0 I | m -1 Fin
7 eqid h m 0 I | m -1 Fin fld h = h m 0 I | m -1 Fin fld h
8 1 2 4 5 6 7 3 mdegldg R Ring F B F 0 ˙ x m 0 I | m -1 Fin F x 0 R h m 0 I | m -1 Fin fld h x = D F
9 6 7 tdeglem1 h m 0 I | m -1 Fin fld h : m 0 I | m -1 Fin 0
10 9 a1i R Ring F B F 0 ˙ h m 0 I | m -1 Fin fld h : m 0 I | m -1 Fin 0
11 10 ffvelrnda R Ring F B F 0 ˙ x m 0 I | m -1 Fin h m 0 I | m -1 Fin fld h x 0
12 eleq1 h m 0 I | m -1 Fin fld h x = D F h m 0 I | m -1 Fin fld h x 0 D F 0
13 11 12 syl5ibcom R Ring F B F 0 ˙ x m 0 I | m -1 Fin h m 0 I | m -1 Fin fld h x = D F D F 0
14 13 adantld R Ring F B F 0 ˙ x m 0 I | m -1 Fin F x 0 R h m 0 I | m -1 Fin fld h x = D F D F 0
15 14 rexlimdva R Ring F B F 0 ˙ x m 0 I | m -1 Fin F x 0 R h m 0 I | m -1 Fin fld h x = D F D F 0
16 8 15 mpd R Ring F B F 0 ˙ D F 0