Metamath Proof Explorer


Theorem mdegnn0cl

Description: Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses mdeg0.d D=ImDegR
mdeg0.p P=ImPolyR
mdeg0.z 0˙=0P
mdegnn0cl.b B=BaseP
Assertion mdegnn0cl RRingFBF0˙DF0

Proof

Step Hyp Ref Expression
1 mdeg0.d D=ImDegR
2 mdeg0.p P=ImPolyR
3 mdeg0.z 0˙=0P
4 mdegnn0cl.b B=BaseP
5 eqid 0R=0R
6 eqid m0I|m-1Fin=m0I|m-1Fin
7 eqid hm0I|m-1Finfldh=hm0I|m-1Finfldh
8 1 2 4 5 6 7 3 mdegldg RRingFBF0˙xm0I|m-1FinFx0Rhm0I|m-1Finfldhx=DF
9 6 7 tdeglem1 hm0I|m-1Finfldh:m0I|m-1Fin0
10 9 a1i RRingFBF0˙hm0I|m-1Finfldh:m0I|m-1Fin0
11 10 ffvelcdmda RRingFBF0˙xm0I|m-1Finhm0I|m-1Finfldhx0
12 eleq1 hm0I|m-1Finfldhx=DFhm0I|m-1Finfldhx0DF0
13 11 12 syl5ibcom RRingFBF0˙xm0I|m-1Finhm0I|m-1Finfldhx=DFDF0
14 13 adantld RRingFBF0˙xm0I|m-1FinFx0Rhm0I|m-1Finfldhx=DFDF0
15 14 rexlimdva RRingFBF0˙xm0I|m-1FinFx0Rhm0I|m-1Finfldhx=DFDF0
16 8 15 mpd RRingFBF0˙DF0