Metamath Proof Explorer


Theorem deg1fval

Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis deg1fval.d D=deg1R
Assertion deg1fval D=1𝑜mDegR

Proof

Step Hyp Ref Expression
1 deg1fval.d D=deg1R
2 oveq2 r=R1𝑜mDegr=1𝑜mDegR
3 df-deg1 deg1=rV1𝑜mDegr
4 ovex 1𝑜mDegRV
5 2 3 4 fvmpt RVdeg1R=1𝑜mDegR
6 fvprc ¬RVdeg1R=
7 reldmmdeg ReldommDeg
8 7 ovprc2 ¬RV1𝑜mDegR=
9 6 8 eqtr4d ¬RVdeg1R=1𝑜mDegR
10 5 9 pm2.61i deg1R=1𝑜mDegR
11 1 10 eqtri D=1𝑜mDegR