Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | deg1z.d | |- D = ( deg1 ` R ) |
|
| deg1z.p | |- P = ( Poly1 ` R ) |
||
| deg1z.z | |- .0. = ( 0g ` P ) |
||
| deg1nn0cl.b | |- B = ( Base ` P ) |
||
| Assertion | deg1nn0cl | |- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1z.d | |- D = ( deg1 ` R ) |
|
| 2 | deg1z.p | |- P = ( Poly1 ` R ) |
|
| 3 | deg1z.z | |- .0. = ( 0g ` P ) |
|
| 4 | deg1nn0cl.b | |- B = ( Base ` P ) |
|
| 5 | 1 | deg1fval | |- D = ( 1o mDeg R ) |
| 6 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 7 | 6 2 3 | ply1mpl0 | |- .0. = ( 0g ` ( 1o mPoly R ) ) |
| 8 | 2 4 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 9 | 5 6 7 8 | mdegnn0cl | |- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |