Metamath Proof Explorer


Theorem deg1n0ima

Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d
|- D = ( deg1 ` R )
deg1z.p
|- P = ( Poly1 ` R )
deg1z.z
|- .0. = ( 0g ` P )
deg1nn0cl.b
|- B = ( Base ` P )
Assertion deg1n0ima
|- ( R e. Ring -> ( D " ( B \ { .0. } ) ) C_ NN0 )

Proof

Step Hyp Ref Expression
1 deg1z.d
 |-  D = ( deg1 ` R )
2 deg1z.p
 |-  P = ( Poly1 ` R )
3 deg1z.z
 |-  .0. = ( 0g ` P )
4 deg1nn0cl.b
 |-  B = ( Base ` P )
5 simpl
 |-  ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> R e. Ring )
6 eldifi
 |-  ( x e. ( B \ { .0. } ) -> x e. B )
7 6 adantl
 |-  ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> x e. B )
8 eldifsni
 |-  ( x e. ( B \ { .0. } ) -> x =/= .0. )
9 8 adantl
 |-  ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> x =/= .0. )
10 1 2 3 4 deg1nn0cl
 |-  ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( D ` x ) e. NN0 )
11 5 7 9 10 syl3anc
 |-  ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> ( D ` x ) e. NN0 )
12 11 ralrimiva
 |-  ( R e. Ring -> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 )
13 1 2 4 deg1xrf
 |-  D : B --> RR*
14 ffun
 |-  ( D : B --> RR* -> Fun D )
15 13 14 ax-mp
 |-  Fun D
16 difss
 |-  ( B \ { .0. } ) C_ B
17 13 fdmi
 |-  dom D = B
18 16 17 sseqtrri
 |-  ( B \ { .0. } ) C_ dom D
19 funimass4
 |-  ( ( Fun D /\ ( B \ { .0. } ) C_ dom D ) -> ( ( D " ( B \ { .0. } ) ) C_ NN0 <-> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 ) )
20 15 18 19 mp2an
 |-  ( ( D " ( B \ { .0. } ) ) C_ NN0 <-> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 )
21 12 20 sylibr
 |-  ( R e. Ring -> ( D " ( B \ { .0. } ) ) C_ NN0 )