| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1z.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1z.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1z.z |
|- .0. = ( 0g ` P ) |
| 4 |
|
deg1nn0cl.b |
|- B = ( Base ` P ) |
| 5 |
1 2 3 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
| 6 |
5
|
3expia |
|- ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. -> ( D ` F ) e. NN0 ) ) |
| 7 |
|
mnfnre |
|- -oo e/ RR |
| 8 |
7
|
neli |
|- -. -oo e. RR |
| 9 |
|
nn0re |
|- ( -oo e. NN0 -> -oo e. RR ) |
| 10 |
8 9
|
mto |
|- -. -oo e. NN0 |
| 11 |
1 2 3
|
deg1z |
|- ( R e. Ring -> ( D ` .0. ) = -oo ) |
| 12 |
11
|
adantr |
|- ( ( R e. Ring /\ F e. B ) -> ( D ` .0. ) = -oo ) |
| 13 |
12
|
eleq1d |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` .0. ) e. NN0 <-> -oo e. NN0 ) ) |
| 14 |
10 13
|
mtbiri |
|- ( ( R e. Ring /\ F e. B ) -> -. ( D ` .0. ) e. NN0 ) |
| 15 |
|
fveq2 |
|- ( F = .0. -> ( D ` F ) = ( D ` .0. ) ) |
| 16 |
15
|
eleq1d |
|- ( F = .0. -> ( ( D ` F ) e. NN0 <-> ( D ` .0. ) e. NN0 ) ) |
| 17 |
16
|
notbid |
|- ( F = .0. -> ( -. ( D ` F ) e. NN0 <-> -. ( D ` .0. ) e. NN0 ) ) |
| 18 |
14 17
|
syl5ibrcom |
|- ( ( R e. Ring /\ F e. B ) -> ( F = .0. -> -. ( D ` F ) e. NN0 ) ) |
| 19 |
18
|
necon2ad |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) e. NN0 -> F =/= .0. ) ) |
| 20 |
6 19
|
impbid |
|- ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |