| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 2 |
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 4 |
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
1 2 3 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| 6 |
5
|
3expia |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 ≠ 0 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
| 7 |
|
mnfnre |
⊢ -∞ ∉ ℝ |
| 8 |
7
|
neli |
⊢ ¬ -∞ ∈ ℝ |
| 9 |
|
nn0re |
⊢ ( -∞ ∈ ℕ0 → -∞ ∈ ℝ ) |
| 10 |
8 9
|
mto |
⊢ ¬ -∞ ∈ ℕ0 |
| 11 |
1 2 3
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ 0 ) = -∞ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐷 ‘ 0 ) = -∞ ) |
| 13 |
12
|
eleq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 0 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0 ) ) |
| 14 |
10 13
|
mtbiri |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ¬ ( 𝐷 ‘ 0 ) ∈ ℕ0 ) |
| 15 |
|
fveq2 |
⊢ ( 𝐹 = 0 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 0 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝐹 = 0 → ( ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ↔ ( 𝐷 ‘ 0 ) ∈ ℕ0 ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝐹 = 0 → ( ¬ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ↔ ¬ ( 𝐷 ‘ 0 ) ∈ ℕ0 ) ) |
| 18 |
14 17
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 = 0 → ¬ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
| 19 |
18
|
necon2ad |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 → 𝐹 ≠ 0 ) ) |
| 20 |
6 19
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 ≠ 0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |