| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1mul3.s |
|- Y = ( Poly1 ` R ) |
| 2 |
|
coe1mul3.t |
|- .xb = ( .r ` Y ) |
| 3 |
|
coe1mul3.u |
|- .x. = ( .r ` R ) |
| 4 |
|
coe1mul3.b |
|- B = ( Base ` Y ) |
| 5 |
|
coe1mul3.d |
|- D = ( deg1 ` R ) |
| 6 |
|
coe1mul4.z |
|- .0. = ( 0g ` Y ) |
| 7 |
|
coe1mul4.r |
|- ( ph -> R e. Ring ) |
| 8 |
|
coe1mul4.f1 |
|- ( ph -> F e. B ) |
| 9 |
|
coe1mul4.f2 |
|- ( ph -> F =/= .0. ) |
| 10 |
|
coe1mul4.g1 |
|- ( ph -> G e. B ) |
| 11 |
|
coe1mul4.g2 |
|- ( ph -> G =/= .0. ) |
| 12 |
5 1 6 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
| 13 |
7 8 9 12
|
syl3anc |
|- ( ph -> ( D ` F ) e. NN0 ) |
| 14 |
13
|
nn0red |
|- ( ph -> ( D ` F ) e. RR ) |
| 15 |
14
|
leidd |
|- ( ph -> ( D ` F ) <_ ( D ` F ) ) |
| 16 |
5 1 6 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ G e. B /\ G =/= .0. ) -> ( D ` G ) e. NN0 ) |
| 17 |
7 10 11 16
|
syl3anc |
|- ( ph -> ( D ` G ) e. NN0 ) |
| 18 |
17
|
nn0red |
|- ( ph -> ( D ` G ) e. RR ) |
| 19 |
18
|
leidd |
|- ( ph -> ( D ` G ) <_ ( D ` G ) ) |
| 20 |
1 2 3 4 5 7 8 13 15 10 17 19
|
coe1mul3 |
|- ( ph -> ( ( coe1 ` ( F .xb G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) .x. ( ( coe1 ` G ) ` ( D ` G ) ) ) ) |