| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1leb.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1leb.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1leb.b |
|- B = ( Base ` P ) |
| 4 |
|
deg1leb.y |
|- .0. = ( 0g ` R ) |
| 5 |
|
deg1leb.a |
|- A = ( coe1 ` F ) |
| 6 |
1 2 3
|
deg1xrcl |
|- ( F e. B -> ( D ` F ) e. RR* ) |
| 7 |
|
nn0re |
|- ( G e. NN0 -> G e. RR ) |
| 8 |
7
|
rexrd |
|- ( G e. NN0 -> G e. RR* ) |
| 9 |
|
xrltnle |
|- ( ( ( D ` F ) e. RR* /\ G e. RR* ) -> ( ( D ` F ) < G <-> -. G <_ ( D ` F ) ) ) |
| 10 |
6 8 9
|
syl2an |
|- ( ( F e. B /\ G e. NN0 ) -> ( ( D ` F ) < G <-> -. G <_ ( D ` F ) ) ) |
| 11 |
1 2 3 4 5
|
deg1lt |
|- ( ( F e. B /\ G e. NN0 /\ ( D ` F ) < G ) -> ( A ` G ) = .0. ) |
| 12 |
11
|
3expia |
|- ( ( F e. B /\ G e. NN0 ) -> ( ( D ` F ) < G -> ( A ` G ) = .0. ) ) |
| 13 |
10 12
|
sylbird |
|- ( ( F e. B /\ G e. NN0 ) -> ( -. G <_ ( D ` F ) -> ( A ` G ) = .0. ) ) |
| 14 |
13
|
necon1ad |
|- ( ( F e. B /\ G e. NN0 ) -> ( ( A ` G ) =/= .0. -> G <_ ( D ` F ) ) ) |
| 15 |
14
|
3impia |
|- ( ( F e. B /\ G e. NN0 /\ ( A ` G ) =/= .0. ) -> G <_ ( D ` F ) ) |